
AS AND
A-LEVEL
COMPUTER
SCIENCE
AS (7516)
A-level (7517)

Specifications
For teaching from September 2015 onwards
For AS exams in May/June 2016 onwards
For A-level exams in May/June 2017 onwards

Version 1.2 February 2016

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are permitted to copy
material from these specifications for their own internal use.
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (company number
3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

aqa.org.uk

G
00396

Get help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/7517

You can talk directly to the Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

http://aqa.org.uk/7517
mailto:computerscience%40aqa.org.uk?subject=

3

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Contents
1 	 Introduction	 5

1.1 	 Why choose AQA for AS and A-level Computer Science	 5
1.2 	 Support and resources to help you teach	 5

2 	 Specification at a glance	 8
2.1 	 AS	 8
2.2 	 A-level	 9

3 	 Subject content – AS	 10
3.1 	 Fundamentals of programming	 10
3.2 	 Fundamentals of data structures	 14
3.3 	 Systematic approach to problem solving	 15
3.4 	 Theory of computation	 16
3.5 	 Fundamentals of data representation	 19
3.6 	 Fundamentals of computer systems	 26
3.7 	 Fundamentals of computer organisation and architecture	 29
3.8 	 Consequences of uses of computing	 34
3.9 	 Fundamentals of communication and networking	 35

4 	 Subject content – A-level	 37
4.1 	 Fundamentals of programming	 37
4.2 	 Fundamentals of data structures	 43
4.3 	 Fundamentals of algorithms	 49
4.4 	 Theory of computation	 51
4.5 	 Fundamentals of data representation	 59
4.6 	 Fundamentals of computer systems	 68
4.7 	 Fundamentals of computer organisation and architecture	 71
4.8 	 Consequences of uses of computing	 76
4.9 	 Fundamentals of communication and networking	 77
4.10 	Fundamentals of databases	 83
4.11 	Big Data	 84
4.12 	Fundamentals of functional programming	 85
4.13 	Systematic approach to problem solving	 88
4.14 	Non-exam assessment – the computing practical project	 90

5 	 Scheme of assessment	 103
5.1 	 Aims	 104
5.2 	 Assessment objectives	 104
5.3 	 Assessment weightings	 105

http://aqa.org.uk/7517

4 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Are you using the latest version of these specifications?
•• You will always find the most up-to-date version of these specifications on our website at

aqa.org.uk/7517
•• We will write to you if there are significant changes to these specifications.

6 	 Non-exam assessment administration	 106
6.1 	 Supervising and authenticating	 106
6.2 	 Avoiding malpractice	 107
6.3 	 Teacher standardisation	 107
6.4 	 Internal standardisation	 107
6.5 	 Annotation	 108
6.6 	 Submitting marks	 108
6.7 	 Factors affecting individual students	 108
6.8 	 Keeping students' work	 108
6.9 	 Moderation	 109
6.10 	After moderation	 109

7 	 General administration	 110
7.1 	 Entries and codes	 110
7.2 	 Overlaps with other qualifications	 111
7.3 	 Awarding grades and reporting results	 111
7.4 	 Re-sits and shelf life	 111
7.5 	 Previous learning and prerequisites	 111
7.6 	 Access to assessment: diversity and inclusion	 111
7.7 	 Working with AQA for the first time	 112
7.8 	 Private candidates	 112

http://aqa.org.uk/7517
http://aqa.org.uk/7517

5

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

1 	Introduction
1.1 	 Why choose AQA for AS and A-level Computer Science

Relevant to the classroom and the real world
Advances in computing are transforming the way we work and our new Computer Science
specifications are changing with the times. We’ve worked closely with teachers to develop our popular
qualifications, refreshing the content where needed but retaining the most popular and effective aspects
of the previous specifications.

This evolutionary approach has built on strong foundations to deliver flexible, accessible and rigorous
qualifications, backed by top quality support, resources and professional development. Without
the need for huge changes we’re delighted to present up-to-date specifications that focus on the
knowledge, understanding and skills students need to progress to higher education or thrive in the
workplace.

A qualification for all abilities at AS and A-level
You’ll find these specifications suitable and appropriate for mixed ability classes – and we’ve helped to
minimise the impact on classroom delivery, resourcing and timetabling by ensuring that you can teach
AS and A-level together. This will help to make the transition to the new specifications smoother and
our schemes of work will show you how the two levels can be taught together.

Assessment you can trust
Like you, we are committed to ensuring that students obtain the results they deserve and are capable
of.

•• The new specifications have very clear, well-structured assessment criteria.
•• Our exams include a variety of assessment styles so that students feel more confident and able to

engage with the questions.
•• Assessment of non-exam assessment (NEA) (A-level only) is more straightforward and designed to

encourage students to do an investigative project on a topic of particular interest to them.

New resources and support to help teaching and learning
Our free resources, events and support, along with professional development opportunities, will
help you to inspire and help your students to fulfil their potential. We’re also collaborating closely
with publishers to ensure that you have textbooks to support you and your students with the new
specifications. With us, your students will get the right results from an exam board you trust.

You can find out about all our Computer Science qualifications at aqa.org.uk/7517.

1.2 	 Support and resources to help you teach
We know that support and resources are vital for your teaching and that you have limited time to find
or develop good quality materials. So we’ve worked with experienced teachers to provide you with a
range of resources that will help you confidently plan, teach and prepare for exams.

http://aqa.org.uk/7517
http://www.aqa.org.uk/7517

6 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Teaching resources
We have too many computer science resources to list here so visit aqa.org.uk/7517 to see them all.
They include:
•• exemplar materials available on eAQA that highlight the standard required
•• specimen and past papers and mark schemes that can be used to exemplify the required standard
•• sample schemes of work and lesson plans to help you plan your course with confidence
•• textbooks
•• training courses to help you deliver AQA Computer Science qualifications
•• dedicated subject advisers to offer expertise and guidance on the technical parts of the qualification

and a dedicated Computer Science subject team available by phone and email to support with the
delivery of the qualification

•• subject expertise courses for all teachers, from newly-qualified teachers who are just getting started
to experienced teachers looking for fresh inspiration.

Preparing for exams
Visit aqa.org.uk/7517 for everything you need to prepare for our exams, including:
•• past papers, mark schemes and examiners’ reports
•• specimen papers and mark schemes for new courses
•• Exampro: a searchable bank of past AQA exam questions
•• exemplar student answers with examiner commentaries.

Analyse your students' results with Enhanced Results Analysis (ERA)
Find out which questions were the most challenging, how the results compare to previous years and
where your students need to improve. ERA, our free online results analysis tool, will help you see where
to focus your teaching. Register at aqa.org.uk/era

For information about results, including maintaining standards over time, grade boundaries and our
post-results services, visit aqa.org.uk/results

Keep your skills up to date with professional development
Wherever you are in your career, there’s always something new to learn. As well as subject-specific
training, we offer a range of courses to help boost your skills:
•• improve your teaching skills in areas including differentiation, teaching literacy and meeting Ofsted

requirements
•• help you prepare for a new role with our leadership and management courses.

You can attend a course at venues around the country, in your school or online – whatever suits your
needs and availability. Find out more at coursesandevents.aqa.org.uk

http://aqa.org.uk/7517
http://www.aqa.org.uk/7517
http://www.aqa.org.uk/7517
http://www.aqa.org.uk/era
http://www.aqa.org.uk/results
http://coursesandevents.aqa.org.uk/

7

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Get help and support

Visit our website for
information, guidance,
support and resources at
aqa.org.uk/7517

You can talk directly to the
Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

http://aqa.org.uk/7517
http://aqa.org.uk/7517
mailto:computerscience%40aqa.org.uk?subject=

8 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

2 	Specification at a glance
2.1 	 AS

Subject content
1	 Fundamentals of programming (page 10)
2	 Fundamentals of data structures (page 14)
3	 Systematic approach to problem solving (page 15)
4	 Theory of computation (page 16)
5	 Fundamentals of data representation (page 19)
6	 Fundamentals of computer systems (page 26)
7	 Fundamentals of computer organisation and architecture (page 29)
8	 Consequences of uses of computing (page 34)
9	 Fundamentals of communication and networking (page 35)

Assessments
Paper 1
What's assessed

This paper tests a student's ability to program,
as well as their theoretical knowledge of
computer science from subject content 1 – 4
above.

Assessed

•• On-screen exam: 1 hour 30 minutes
•• 50% of AS

Questions

Students answer a series of short questions
and write/adapt/extend programs in an
electronic answer document provided by us.

We will issue preliminary material, a skeleton
program (available in each of the programming
languages) and, where appropriate, test data,
for use in the exam.

Paper 2
What's assessed

This paper tests a student's ability to answer
questions from subject content 5 – 9 above.

Assessed

•• Written exam: 1 hour 30 minutes
•• 50% of AS

Questions

A series of short-answer and extended-answer
questions.

+

http://aqa.org.uk/7517

9

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

2.2 	 A-level

Subject content
10	 Fundamentals of programming (page 37)
11	 Fundamentals of data structures (page 43)
12	 Fundamentals of algorithms (page 49)
13	 Theory of computation (page 51)
14	 Fundamentals of data representation (page 59)
15	 Fundamentals of computer systems (page 68)
16	 Fundamentals of computer organisation and architecture (page 71)
17	 Consequences of uses of computing (page 76)
18	 Fundamentals of communication and networking (page 77)
19	 Fundamentals of databases (page 83)
20	 Big Data (page 84)
21	 Fundamentals of functional programming (page 85)
22	 Systematic approach to problem solving (page 88)
23	 Non-exam assessment – the computing practical project (page 90)

Assessments
Paper 1
What's assessed

This paper tests a student's
ability to program, as well as
their theoretical knowledge
of computer science from
subject content 10 – 13 above
and the skills required from
section 22 above.

Assessed

•• On-screen exam: 2 hours
30 minutes

•• 40% of A-level

Questions

Students answer a series of
short questions and write/
adapt/extend programs in an
electronic answer document
provided by us.

We will issue preliminary
material, a skeleton program
(available in each of the
programming languages) and,
where appropriate, test data,
for use in the exam.

Paper 2
What's assessed

This paper tests a student's
ability to answer questions
from subject content 14 – 21
above.

Assessed

•• Written exam: 2 hours
30 minutes

•• 40% of A-level

Questions

Compulsory short-answer
and extended-answer
questions.

Non-exam assessment
What's assessed

The non-exam assessment
assesses student's ability to
use the knowledge and skills
gained through the course
to solve or investigate a
practical problem. Students
will be expected to follow
a systematic approach to
problem solving, as shown in
section 22 above.

Assessed
•• 75 marks
•• 20% of A-level

+ +

http://aqa.org.uk/7517

10 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3 	Subject content – AS
We will support the following programming languages:
•• C#
•• Java
•• Pascal/Delphi
•• Python
•• VB.Net.

Schools and colleges will be asked to indicate their programming language preference at the start of
the study of the specification.

3.1 	 Fundamentals of programming

3.1.1 	Programming

3.1.1.1 	Data types

Content Additional information
Understand the concept of a data type.

Understand and use the following appropriately:
•• integer
•• real/float
•• Boolean
•• character
•• string
•• date/time
•• records (or equivalent)
•• arrays (or equivalent).

Define and use user-defined data types based on
language-defined (built-in) data types.

http://aqa.org.uk/7517

11

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.1.1.2 	Programming concepts

Content Additional information
Use, understand and know how the following
statement types can be combined in programs:
•• variable declaration
•• constant declaration
•• assignment
•• iteration
•• selection
•• subroutine (procedure/function).

The three combining principles (sequence,
iteration/repetition and selection/choice) are basic
to all imperative programming languages.

Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the start
or the end of the iterative structure. A theoretical
understanding of condition(s) at either end of
an iterative structure is required, regardless of
whether they are supported by the language
being used.
Use nested selection and nested iteration
structures.
Use meaningful identifier names and know why it
is important to use them.

3.1.1.3 	Arithmetic operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• addition
•• subtraction
•• multiplication
•• real/float division
•• integer division, including remainders
•• exponentiation
•• rounding
•• truncation.

3.1.1.4 	Relational operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• equal to
•• not equal to
•• less than
•• greater than
•• less than or equal to
•• greater than or equal to.

http://aqa.org.uk/7517

12 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.1.1.5 	Boolean operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• NOT
•• AND
•• OR
•• XOR.

3.1.1.6 	Constants and variables in a programming language

Content Additional information
Be able to explain the differences between a
variable and a constant.
Be able to explain the advantages of using
named constants.

3.1.1.7 	String-handling operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• length
•• position
•• substring
•• concatenation
•• character → character code
•• character code → character
•• string conversion operations.

Expected string conversion operations:
•• string to integer
•• string to float
•• integer to string
•• float to string
•• date/time to string
•• string to date/time.

3.1.1.8 	Random number generation in a programming language

Content Additional information
Be familiar with, and be able to use, random
number generation.

3.1.1.9 	Exception handling

Content Additional information
Be familiar with the concept of exception handling.

Know how to use exception handling in a
programming language with which students are
familiar.

http://aqa.org.uk/7517

13

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.1.1.10 Subroutines (procedures/functions)

Content Additional information
Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’
block of code that may be executed (called) by
simply writing its name in a program statement.
Be able to explain the advantages of using
subroutines in programs.

3.1.1.11 Parameters of subroutines

Content Additional information
Be able to describe the use of parameters to pass
data within programs.
Be able to use subroutines with interfaces.

3.1.1.12 Returning a value/values from a subroutine

Content Additional information
Be able to use subroutines that return values to
the calling routine.

3.1.1.13 Local variables in subroutines

Content Additional information
Know that subroutines may declare their own
variables, called local variables, and that local
variables:
•• exist only while the subroutine is executing
•• are accessible only within the subroutine.

Be able to use local variables and explain why it
is good practice to do so.

3.1.1.14 Global variables in a programming language

Content Additional information
Be able to contrast local variables with global
variables.

http://aqa.org.uk/7517

14 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.1.2 	Procedural-oriented programming

3.1.2.1 	Structured programming

Content Additional information
Understand the structured approach to program
design and construction.
Be able to construct and use hierarchy charts
when designing programs.
Be able to explain the advantages of the
structured approach.

3.2 	 Fundamentals of data structures

3.2.1 	Data structures and abstract data types

3.2.1.1 	Data structures

Content Additional information
Be familiar with the concept of data structures. It may be helpful to set the concept of a data

structure in various contexts that students may
already be familiar with. It may also be helpful to
suggest/demonstrate how data structures could
be used in a practical setting.

3.2.1.2 	Single- and multi-dimensional arrays (or equivalent)

Content Additional information
Use arrays (or equivalent) in the design of
solutions to simple problems.

A one-dimensional array is a useful way of
representing a vector. A two-dimensional array
is a useful way of representing a matrix. More
generally, an n-dimensional array is a set of
elements with the same data type that are
indexed by a tuple of n integers, where a tuple is
an ordered list of elements.

3.2.1.3 	Fields, records and files

Content Additional information
Be able to read/write from/to a text file.

Be able to read/write data from/to a binary (non-
text) file.

http://aqa.org.uk/7517

15

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.3 	 Systematic approach to problem solving

3.3.1 	Aspects of software development

3.3.1.1 	Analysis

Content Additional information
Be aware that before a problem can be solved, it
must be defined, the requirements of the system
that solves the problem must be established and
a data model created.

Students should have experience of using
abstraction to model aspects of the external world
in a program.

3.3.1.2 	Design

Content Additional information
Be aware that before constructing a solution,
the solution should be designed and specified,
for example planning data structures for the
data model, designing algorithms, designing an
appropriate modular structure for the solution and
designing the human user interface.

Students should have sufficient experience of
successfully structuring programs into modular
parts with clear documented interfaces to enable
them to design appropriate modular structures for
solutions.

3.3.1.3 	Implementation

Content Additional information
Be aware that the models and algorithms need
to be implemented in the form of data structures
and code (instructions) that a computer can
understand.

Students should have sufficient practice of writing,
debugging and testing programs to enable them
to develop the skills to articulate how programs
work, arguing for their correctness and efficiency
using logical reasoning, test data and user
feedback.

3.3.1.4 	Testing

Content Additional information
Be aware that the implementation must be tested
for the presence of errors, using selected test
data covering normal (typical), boundary and
erroneous data.

Students should have practical experience
of designing and applying test data, normal,
boundary and erroneous to the testing of
programs so that they are familiar with these test
data types and the purpose of testing.

3.3.1.5 	Evaluation

Content Additional information
Know the criteria for evaluating a computer
system.

http://aqa.org.uk/7517

16 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.4 	 Theory of computation

3.4.1 	Abstraction and automation

3.4.1.1 	Problem-solving

Content Additional information
Be able to develop solutions to simple logic
problems.
Be able to check solutions to simple logic
problems.

3.4.1.2 	Following and writing algorithms

Content Additional information
Understand the term algorithm. A sequence of steps that can be followed to

complete a task and that always terminates.
Be able to express the solution to a simple
problem as an algorithm using pseudo-code, with
the standard constructs:
•• sequence
•• assignment
•• selection
•• iteration.

Be able to hand-trace algorithms.

Be able to convert an algorithm from pseudo-
code into high level language program code.
Be able to articulate how a program works,
arguing for its correctness and its efficiency using
logical reasoning, test data and user feedback.

3.4.1.3 	Abstraction

Content Additional information
Be familiar with the concept of abstraction as
used in computations and know that:
•• representational abstraction is a representation

arrived at by removing unnecessary details
•• abstraction by generalisation or categorisation

is a grouping by common characteristics to
arrive at a hierarchical relationship of the 'is a
kind of' type.

http://aqa.org.uk/7517

17

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.4.1.4 	Information hiding

Content Additional information
Be familiar with the process of hiding all details
of an object that do not contribute to its essential
characteristics.

3.4.1.5 	Procedural abstraction

Content Additional information
Know that procedural abstraction represents a
computational method.

The result of abstracting away the actual
values used in any particular computation is a
computational pattern or computational method –
a procedure.

3.4.1.6 	Functional abstraction

Content Additional information
Know that for functional abstraction the particular
computation method is hidden.

The result of a procedural abstraction is a
procedure, not a function. To get a function
requires yet another abstraction, which disregards
the particular computation method. This is
functional abstraction.

3.4.1.7 	Data abstraction

Content Additional information
Know that details of how data are actually
represented are hidden, allowing new kinds of
data objects to be constructed from previously
defined types of data objects.

Data abstraction is a methodology that enables
us to isolate how a compound data object is used
from the details of how it is constructed.

For example, a stack could be implemented as an
array and a pointer for top of stack.

3.4.1.8 	Problem abstraction/reduction

Content Additional information
Know that details are removed until the problem
is represented in a way that is possible to solve
because the problem reduces to one that has
already been solved.

3.4.1.9 	Decomposition

Content Additional information
Know that procedural decomposition
means breaking a problem into a number
of sub-problems, so that each sub-problem
accomplishes an identifiable task, which might
itself be further subdivided.

http://aqa.org.uk/7517

18 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.4.1.10 Composition

Content Additional information
Know how to build a composition abstraction
by combining procedures to form compound
procedures.
Know how to build data abstractions by combining
data objects to form compound data, for example
tree data structure.

3.4.1.11 Automation

Content Additional information
Understand that automation requires putting
models (abstraction of real world objects/
phenomena) into action to solve problems. This is
achieved by:
•• creating algorithms
•• implementing the algorithms in program code

(instructions)
•• implementing the models in data structures
•• executing the code.

Computer science is about building clean abstract
models (abstractions) of messy, noisy, real world
objects or phenomena. Computer scientists have
to choose what to include in models and what
to discard, to determine the minimum amount
of detail necessary to model in order to solve a
given problem to the required degree of accuracy.

Computer science deals with putting the models
into action to solve problems. This involves
creating algorithms for performing actions on, and
with, the data that has been modelled.

3.4.2 	Finite state machines (FSMs)

3.4.2.1 	Finite state machines (FSMs) without output

Content Additional information
Be able to draw and interpret simple state
transition diagrams and state transition tables for
FSMs with no output.

http://aqa.org.uk/7517

19

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5 	 Fundamentals of data representation

3.5.1 	Number systems

3.5.1.1 	Natural numbers

Content Additional information
Be familiar with the concept of a natural number
and the set ℕ of natural numbers (including zero).

ℕ = {0, 1, 2, 3, … }

3.5.1.2 	Integer numbers

Content Additional information
Be familiar with the concept of an integer and the
set ℤ of integers.

ℤ = { …, -3, -2, -1, 0, 1, 2, 3, … }

3.5.1.3 	Rational numbers

Content Additional information
Be familiar with the concept of a rational number
and the set ℚ of rational numbers, and that this
set includes the integers.

ℚ is the set of numbers that can be written as
fractions (ratios of integers). Since a number such
as 7 can be written as 7/1, all integers are rational
numbers.

3.5.1.4 	Irrational numbers

Content Additional information
Be familiar with the concept of an irrational
number.

An irrational number is one that cannot be written
as a fraction, for example √2.

3.5.1.5 	Real numbers

Content Additional information
Be familiar with the concept of a real number and
the set ℝ of real numbers, which includes the
natural numbers, the rational numbers, and the
irrational numbers.

ℝ is the set of all 'possible real world quantities'.

3.5.1.6 	Ordinal numbers

Content Additional information
Be familiar with the concept of ordinal numbers
and their use to describe the numerical positions
of objects.

When objects are placed in order, ordinal
numbers are used to tell their position. For
example, if we have a well-ordered set S = {‘a’,
‘b’, ‘c’, ‘d’}, then ‘a’ is the 1st object, ‘b’ the 2nd,
and so on.

http://aqa.org.uk/7517

20 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.1.7 	Counting and measurement

Content Additional information
Be familiar with the use of:
•• natural numbers for counting
•• real numbers for measurement.

3.5.2 	Number bases

3.5.2.1 	Number base

Content Additional information
Be familiar with the concept of a number base, in
particular:
•• decimal (base 10)
•• binary (base 2)
•• hexadecimal (base 16).

Students should be familiar with expressing a
number’s base using a subscript as follows:

Base 10: Number10, eg 6710

Base 2: Number2, eg 100110112

Base 16: Number16, eg AE16

Convert between decimal, binary and
hexadecimal number bases.
Be familiar with, and able to use, hexadecimal as
a shorthand for binary and to understand why it is
used in this way.

3.5.3 	Units of information

3.5.3.1 	Bits and bytes

Content Additional information
Know that:
•• the bit is the fundamental unit of information
•• a byte is a group of 8 bits.

A bit is either 0 or 1.

Know that the 2n different values can be
represented with n bits.

For example, 3 bits can be configured in 23 = 8
different ways.

000, 001, 010, 011, 100, 101, 110, 111

http://aqa.org.uk/7517

21

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.3.2 	Units

Content Additional information
Know that quantities of bytes can be described
using binary prefixes representing powers of 2 or
using decimal prefixes representing powers of 10,
eg one kibibyte is written as 1KiB = 210 B and one
kilobyte is written as 1 kB = 103 B.

Know the names, symbols and corresponding
powers of 2 for the binary prefixes:
•• kibi, Ki - 210

•• mebi, Mi - 220

•• gibi, Gi - 230

•• tebi, Ti - 240

Know the names, symbols and corresponding
powers of 10 for the decimal prefixes:
•• kilo, k - 103

•• mega, M - 106

•• giga, G - 109

•• tera, T - 1012

Historically the terms kilobyte, megabyte, etc
have often been used when kibibyte, mebibyte,
etc are meant.

3.5.4 	Binary number system

3.5.4.1 	Unsigned binary

Content Additional information
Know the difference between unsigned binary and
signed binary.

Students are expected to be able to convert
between unsigned binary and decimal and vice
versa.

Know that in unsigned binary the minimum and
maximum values for a given number of bits, n,
are 0 and 2n -1 respectively.

3.5.4.2 	Unsigned binary arithmetic

Content Additional information
Be able to:
•• add two unsigned binary integers
•• multiply two unsigned binary integers.

http://aqa.org.uk/7517

22 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.4.3 	Signed binary using two’s complement

Content Additional information
Know that signed binary can be used to represent
negative integers and that one possible coding
scheme is two’s complement.

This is the only representation of negative
integers that will be examined. Students are
expected to be able to convert between signed
binary and decimal and vice versa.

Know how to:
•• represent negative and positive integers in

two’s complement
•• perform subtraction using two’s complement
•• calculate the range of a given number of bits,

n.

3.5.4.4 	Numbers with a fractional part

Content Additional information
Know how numbers with a fractional part can be
represented in:
•• fixed point form in binary in a given number of

bits.
Be able to convert from:
•• decimal to binary of a given number of bits
•• binary to decimal of a given number of bits.

3.5.5 	Information coding systems

3.5.5.1 	Character form of a decimal digit

Content Additional information
Differentiate between the character code
representation of a decimal digit and its pure
binary representation.

3.5.5.2 	ASCII and Unicode

Content Additional information
Describe ASCII and Unicode coding systems for
coding character data and explain why Unicode
was introduced.

http://aqa.org.uk/7517

23

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.5.3 	Error checking and correction

Content Additional information
Describe and explain the use of:
•• parity bits
•• majority voting
•• check digits.

3.5.6 	Representing images, sound and other data

3.5.6.1 	Bit patterns, images, sound and other data

Content Additional information
Describe how bit patterns may represent other
forms of data, including graphics and sound.

3.5.6.2 	Analogue and digital

Content Additional information
Understand the difference between analogue and
digital:
•• data
•• signals.

3.5.6.3 	Analogue/digital conversion

Content Additional information
Describe the principles of operation of:
•• an analogue to digital converter (ADC)
•• a digital to analogue converter (DAC).

http://aqa.org.uk/7517

24 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.6.4 	Bitmapped graphics

Content Additional information
Explain how bitmaps are represented.

Explain the following for bitmaps:
•• resolution
•• colour depth
•• size in pixels.

Resolution of an image is expressed directly as
width of image in pixels by height of image in
pixels using notation width x height.

Alternatively, resolution can be expressed in
number of dots per inch where a dot is a pixel.

colour depth = number of bits stored for each
pixel.

resolution in pixels = width in pixels x height in
pixels.

Calculate storage requirements for bitmapped
images and be aware that bitmap image files may
also contain metadata.

Ignoring metadata,

storage requirements = resolution x colour depth

where resolution is expressed in width in pixels x
height in pixels.

Be familiar with typical metadata. eg width, height, colour depth.

3.5.6.5 	Digital representation of sound

Content Additional information
Describe the digital representation of sound in
terms of:
•• sample resolution
•• sampling rate and the Nyquist theorem.

Calculate sound sample sizes in bytes.

3.5.6.6 	Musical Instrument Digital Interface (MIDI)

Content Additional information
Describe the purpose of MIDI and the use of
event messages in MIDI.
Describe the advantages of using MIDI files for
representing music.

http://aqa.org.uk/7517

25

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.5.6.7 	Data compression

Content Additional information
Know why images and sound files are often
compressed and that other files, such as text
files, can also be compressed.
Understand the difference between lossless and
lossy compression and explain the advantages
and disadvantages of each.
Explain the principles behind the following
techniques for lossless compression:
•• run length encoding (RLE)
•• dictionary-based methods.

3.5.6.8 	Encryption

Content Additional information
Understand what is meant by encryption and be
able to define it.

Students should be familiar with the terms cipher,
plaintext and ciphertext.

Caesar and Vernam ciphers are at opposite
extremes. One offers perfect security, the other
doesn’t. Between these two types are ciphers that
are computationally secure – see below. Students
will be assessed on the two types. Ciphers other
than Caesar may be used to assess students'
understanding of the principles involved. These
will be explained and be similar in terms of
computational complexity.

Be familiar with Caesar cipher and be able to
apply it to encrypt a plaintext message and
decrypt a ciphertext.

Be able to explain why it is easily cracked.
Be familiar with Vernam cipher or one-time pad
and be able to apply it to encrypt a plaintext
message and decrypt a ciphertext.

Explain why Vernam cipher is considered as a
cypher with perfect security.

Since the key k is chosen uniformly at random,
the ciphertext c is also distributed uniformly.
The key k must be used once only. The key k is
known as a one-time pad.

Compare Vernam cipher with ciphers that depend
on computational security.

Vernam cipher is the only one to have been
mathematically proved to be completely secure.
The worth of all other ciphers ever devised is
based on computational security. In theory, every
cryptographic algorithm except for Vernam cipher
can be broken, given enough ciphertext and time.

http://aqa.org.uk/7517

26 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.6 	 Fundamentals of computer systems

3.6.1 	Hardware and software

3.6.1.1 	Relationship between hardware and software

Content Additional information
Understand the relationship between hardware
and software and be able to define the terms:
•• hardware
•• software.

3.6.1.2 	Classification of software

Content Additional information
Explain what is meant by:
•• system software
•• application software.

Understand the need for, and attributes of,
different types of software.

3.6.1.3 	System software

Content Additional information
Understand the need for, and functions of the
following system software:
•• operating systems (OSs)
•• utility programs
•• libraries
•• translators (compiler, assembler, interpreter).

3.6.1.4 	Role of an operating system (OS)

Content Additional information
Understand that a role of the operating system is
to hide the complexities of the hardware.
Know that the OS handles resource management,
managing hardware to allocate processors,
memories and I/O devices among competing
processes.

http://aqa.org.uk/7517

27

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.6.2 	Classification of programming languages

3.6.2.1 	Classification of programming languages

Content Additional information
Show awareness of the development of types of
programming languages and their classification
into low-and high-level languages.
Know that low-level languages are considered to
be:
•• machine-code
•• assembly language.

Know that high-level languages include
imperative high level-language.
Describe machine-code language and assembly
language.
Understand the advantages and disadvantages
of machine-code and assembly language
programming compared with high-level language
programming.
Explain the term ‘imperative high-level language’
and its relationship to low-level languages.

3.6.3 	Types of program translator

3.6.3.1 	Types of program translator

Content Additional information
Understand the role of each of the following:
•• assembler
•• compiler
•• interpreter.

Explain the differences between compilation and
interpretation. Describe situations in which each
would be appropriate.
Explain why an intermediate language such as
bytecode is produced as the final output by some
compilers and how it is subsequently used.
Understand the difference between source and
object (executable) code.

http://aqa.org.uk/7517

28 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.6.4 	Logic gates

3.6.4.1 	Logic gates

Content Additional information
Construct truth tables for the following logic gates:
•• NOT
•• AND
•• OR
•• XOR
•• NAND
•• NOR.

Students should know and be able to use ANSI/
IEEE standard 91-1984 Distinctive shape logic
gate symbols for these logic gates.

Be familiar with drawing and interpreting logic
gate circuit diagrams involving one or more of the
above gates.
Complete a truth table for a given logic gate
circuit.
Write a Boolean expression for a given logic gate
circuit.
Draw an equivalent logic gate circuit for a given
Boolean expression.

3.6.5 	Boolean algebra

3.6.5.1 	Using Boolean algebra

Content Additional information
Be familiar with the use of Boolean identities and
De Morgan’s laws to manipulate and simplify
Boolean expressions.

http://aqa.org.uk/7517

29

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.7 	 Fundamentals of computer organisation and architecture

3.7.1 	Internal hardware components of a computer

3.7.1.1 	Internal hardware components of a computer

Content Additional information
Have an understanding and knowledge of the
basic internal components of a computer system.

Although exam questions about specific machines
will not be asked, it might be useful to base this
section on the machines used at the centre.

Understand the role of the following components
and how they relate to each other:
•• processor
•• main memory
•• address bus
•• data bus
•• control bus
•• I/O controllers.

Understand the need for, and means of,
communication between components. In
particular, understand the concept of a bus and
how address, data and control buses are used.
Be able to explain the difference between von
Neumann and Harvard architectures and describe
where each is typically used.

Embedded systems such as digital signal
processing (DSP) systems use Harvard
architecture processors extensively.

Von Neumann architecture is used extensively in
general purpose computing systems.

Understand the concept of addressable memory.

3.7.2 	The stored program concept

3.7.2.1 	The meaning of the stored program concept

Content Additional information
Be able to describe the stored program concept:
machine code instructions stored in main memory
are fetched and executed serially by a processor
that performs arithmetic and logical operations.

http://aqa.org.uk/7517

30 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.7.3 	Structure and role of the processor and its components

3.7.3.1 	The processor and its components

Content Additional information
Explain the role and operation of a processor and
its major components:
•• arithmetic logic unit
•• control unit
•• clock
•• general-purpose registers
•• dedicated registers, including:

•• program counter
•• current instruction register
•• memory address register
•• memory buffer register
•• status register.

3.7.3.2 	The Fetch-Execute cycle and the role of registers within it

Content Additional information
Explain how the Fetch-Execute cycle is used to
execute machine code programs, including the
stages in the cycle (fetch, decode, execute) and
details of registers used.

http://aqa.org.uk/7517

31

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.7.3.3 	The processor instruction set

Content Additional information
Understand the term ‘processor instruction set’
and know that an instruction set is processor
specific.
Know that instructions consist of an opcode and
one or more operands (value, memory address or
register).

A simple model will be used in which the
addressing mode will be incorporated into the bits
allocated to the opcode so the latter defines both
the basic machine operation and the addressing
mode. Students will not be expected to define
opcode, only interpret opcodes in the given
context of a question.

For example, 4 bits have been allocated to the
opcode (3 bits for basic machine operation, eg
ADD, and 1 bit for the addressing mode). 4 bits
have been allocated to the operand, making the
instruction, opcode + operand, 8 bits in length. In
this example, 16 different opcodes are possible
(24 = 16).

3.7.3.4 	Addressing modes

Content Additional information
Understand and apply immediate and direct
addressing modes.

Immediate addressing: the operand is the datum.

Direct addressing: the operand is the address of
the datum. Address to be interpreted as meaning
either main memory or register.

http://aqa.org.uk/7517

32 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.7.3.5 	Machine-code/assembly language operations

Content Additional information
Understand and apply the basic machine-code
operations of:
•• load
•• add
•• subtract
•• store
•• branching (conditional and unconditional)
•• compare
•• logical bitwise operators (AND, OR, NOT,

XOR)
•• logical

•• shift right
•• shift left

•• halt.

Use the basic machine-code operations above
when machine-code instructions are expressed
in mnemonic form- assembly language, using
immediate and direct addressing.

3.7.3.6 	Factors affecting processor performance

Content Additional information
Explain the effect on processor performance of:
•• multiple cores
•• cache memory
•• clock speed
•• word length
•• address bus width
•• data bus width.

3.7.4 	External hardware devices

3.7.4.1 	Input and output devices

Content Additional information
Know the main characteristics, purposes and
suitability of the devices and understand their
principles of operation.

Devices that need to be considered are:
•• barcode reader
•• digital camera
•• laser printer
•• RFID.

http://aqa.org.uk/7517

33

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.7.4.2 	Secondary storage devices

Content Additional information
Explain the need for secondary storage within a
computer system.
Know the main characteristics, purposes,
suitability and understand the principles of
operation of the following devices:
•• hard disk
•• optical disk
•• solid-state disk (SSD).

SSD = NAND flash memory + a controller that
manages pages, and blocks and complexities
of writing. Based on floating gate transistors
that trap and store charge. A block, made up
of many pages, cannot overwrite pages, page
has to be erased before it can be written to but
technology requires the whole block to be erased.
Lower latency and faster transfer speeds than a
magnetic disk drive.

Compare the capacity and speed of access of
various media and make a judgement about their
suitability for different applications.

http://aqa.org.uk/7517

34 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.8 	 Consequences of uses of computing

3.8.1 	Individual (moral), social (ethical), legal and cultural issues and
opportunities

Content Additional information
Show awareness of current individual (moral),
social (ethical), legal and cultural opportunities
and risks of computing.

Understand that:
•• developments in computer science and the

digital technologies have dramatically altered
the shape of communications and information
flows in societies, enabling massive
transformations in the capacity to:
•• monitor behaviour
•• amass and analyse personal information
•• distribute, publish, communicate and

disseminate personal information
•• computer scientists and software engineers

therefore have power, as well as the
responsibilities that go with it, in the algorithms
that they devise and the code that they deploy

•• software and their algorithms embed moral
and cultural values

•• the issue of scale, for software the whole world
over, creates potential for individual computer
scientists and software engineers to produce
great good, but with it comes the ability to
cause great harm.

Be able to discuss the challenges facing
legislators in the digital age.

Teachers may wish to employ two very powerful
techniques, hypotheticals and case studies, to
engage students in the issues.

Hypotheticals allow students to isolate quickly
important ethical principles in an artificially
simplified context. For example, a teacher might
ask students to explain and defend how, as a
Google project manager, they would evaluate a
proposal to bring Google’s Street View technology
to a remote African village. What questions
should be asked? Who should be consulted?
What benefits, risks and safeguards considered?
What are the trade-offs?

Case studies allow students to confront the tricky
interplay between the sometimes competing
ethical values and principles relevant in real
world settings. For example, the Google Street
View case might be used to tease out the
ethical conflicts between individual and cultural
expectations, the principle of informed consent,
Street View’s value as a service, its potential
impact on human perceptions and behaviours,
and its commercial value to Google and its
shareholders.

There are many resources available on the
Internet to support teaching of this topic.

http://aqa.org.uk/7517

35

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.9 	 Fundamentals of communication and networking

3.9.1 	Communication

3.9.1.1 	Communication methods

Content Additional information
Define serial and parallel transmission methods
and discuss the advantages of serial over parallel
transmission.
Define and compare synchronous and
asynchronous data transmission.
Describe the purpose of start and stop bits in
asynchronous data transmission.

3.9.1.2 	Communication basics

Content Additional information
Define:
•• baud rate
•• bit rate
•• bandwidth
•• latency
•• protocol.

Differentiate between baud rate and bit rate. Bit rate can be higher than baud rate if more than
one bit is encoded in each signal change.

Understand the relationship between bit rate and
bandwidth.

Bit rate is directly proportionate to bandwidth.

3.9.2 	Networking

3.9.2.1 	Network topology

Content Additional information
Understand:
•• physical star topology
•• logical bus network topology

and:
•• differentiate between them
•• explain their operation
•• compare each (advantages and

disadvantages).

A network physically wired in star topology can
behave logically as a bus network by using a bus
protocol and appropriate physical switching.

http://aqa.org.uk/7517

36 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

3.9.2.2 	Types of networking between hosts

Content Additional information
Explain the following and describe situations
where they might be used:
•• peer-to-peer networking
•• client-server networking.

In a peer-to-peer network, each computer has
equal status. In a client-server network, most
computers are nominated as clients and one or
more as servers. The clients request services
from the servers, which provide these services,
for example file server, email server.

3.9.2.3 	Wireless networking

Content Additional information
Explain the purpose of WiFi. A wireless local area network that is based on

international standards.

Used to enable devices to connect to a network
wirelessly.

Be familiar with the components required for
wireless networking.

Wireless network adapter.

Wireless access point.
Be familiar with how wireless networks are
secured.

Strong encryption of transmitted data using WPA
(WiFi Protected Access)/WPA2, SSID (Service
Set Identifier) broadcast disabled, MAC (Media
Access Control) address white list.

Explain the wireless protocol Carrier Sense
Multiple Access with Collision Avoidance (CSMA/
CA) with and without Request to Send/Clear to
Send (RTS/CTS).
Be familiar with the purpose of Service Set
Identifier (SSID).

http://aqa.org.uk/7517

37

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4 	Subject content – A-level
We will support the following programming languages:
•• C#
•• Java
•• Pascal/Delphi
•• Python
•• VB.Net.

Schools and colleges will be asked to indicate their programming language preference at the start of
the study of the specification.

4.1 	 Fundamentals of programming

4.1.1 	Programming

4.1.1.1 	Data types

Content Additional information
Understand the concept of a data type.

Understand and use the following appropriately:
•• integer
•• real/float
•• Boolean
•• character
•• string
•• date/time
•• pointer/reference
•• records (or equivalent)
•• arrays (or equivalent).

Variables declared as a pointer or reference data
type are used as stores for memory addresses
of objects created at runtime, ie dynamically.
Not all languages support explicit pointer types,
but students should have an opportunity to
understand this data type.

Define and use user-defined data types based on
language-defined (built-in) data types.

http://aqa.org.uk/7517

38 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.1.1.2 	Programming concepts

Content Additional information
Use, understand and know how the following
statement types can be combined in programs:
•• variable declaration
•• constant declaration
•• assignment
•• iteration
•• selection
•• subroutine (procedure/function).

The three combining principles (sequence,
iteration/repetition and selection/choice) are basic
to all imperative programming languages.

Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the start
or the end of the iterative structure. A theoretical
understanding of condition(s) at either end of
an iterative structure is required, regardless of
whether they are supported by the language
being used.
Use nested selection and nested iteration
structures.
Use meaningful identifier names and know why it
is important to use them.

4.1.1.3 	Arithmetic operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• addition
•• subtraction
•• multiplication
•• real/float division
•• integer division, including remainders
•• exponentiation
•• rounding
•• truncation.

4.1.1.4 	Relational operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• equal to
•• not equal to
•• less than
•• greater than
•• less than or equal to
•• greater than or equal to.

http://aqa.org.uk/7517

39

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.1.1.5 	Boolean operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• NOT
•• AND
•• OR
•• XOR.

4.1.1.6 	Constants and variables in a programming language

Content Additional information
Be able to explain the differences between a
variable and a constant.
Be able to explain the advantages of using
named constants.

4.1.1.7 	String-handling operations in a programming language

Content Additional information
Be familiar with and be able to use:
•• length
•• position
•• substring
•• concatenation
•• character → character code
•• character code → character
•• string conversion operations.

Expected string conversion operations:
•• string to integer
•• string to float
•• integer to string
•• float to string
•• date/time to string
•• string to date/time.

4.1.1.8 	Random number generation in a programming language

Content Additional information
Be familiar with, and be able to use, random
number generation.

4.1.1.9 	Exception handling

Content Additional information
Be familiar with the concept of exception
handling.
Know how to use exception handling in a
programming language with which students are
familiar.

http://aqa.org.uk/7517

40 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.1.1.10 Subroutines (procedures/functions)

Content Additional information
Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’
block of code that may be executed (called) by
simply writing its name in a program statement.
Be able to explain the advantages of using
subroutines in programs.

4.1.1.11 Parameters of subroutines

Content Additional information
Be able to describe the use of parameters to pass
data within programs.
Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine

Content Additional information
Be able to use subroutines that return values to
the calling routine.

4.1.1.13 Local variables in subroutines

Content Additional information
Know that subroutines may declare their own
variables, called local variables, and that local
variables:
•• exist only while the subroutine is executing
•• are accessible only within the subroutine.

Be able to use local variables and explain why it
is good practice to do so.

4.1.1.14 Global variables in a programming language

Content Additional information
Be able to contrast local variables with global
variables.

http://aqa.org.uk/7517

41

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.1.1.15 Role of stack frames in subroutine calls

Content Additional information
Be able to explain how a stack frame is used with
subroutine calls to store:
•• return addresses
•• parameters
•• local variables.

4.1.1.16 Recursive techniques

Content Additional information
Be familiar with the use of recursive techniques in
programming languages (general and base cases
and the mechanism for implementation).
Be able to solve simple problems using recursion.

4.1.2 	Programming paradigms

4.1.2.1 	Programming paradigms

Content Additional information
Understand the characteristics of the procedural-
and object-oriented programming paradigms, and
have experience of programming in each.

4.1.2.2 	Procedural-oriented programming

Content Additional information
Understand the structured approach to program
design and construction.
Be able to construct and use hierarchy charts
when designing programs.
Be able to explain the advantages of the
structured approach.

http://aqa.org.uk/7517

42 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.1.2.3 	Object-oriented programming

Content Additional information
Be familiar with the concepts of:
•• class
•• object
•• instantiation
•• encapsulation
•• inheritance
•• aggregation

•• association aggregation
•• composition aggregation

•• polymorphism
•• overriding.

Students should know that:
•• a class defines methods and property/attribute

fields that capture the common behaviours and
characteristics of objects

•• objects based on a class are created using a
constructor, implicit or explicit, and a reference
to the object assigned to a reference variable
of the class type.

Know why the object-oriented paradigm is used.

Be aware of the following object-oriented design
principles:
•• encapsulate what varies
•• favour composition over inheritance
•• program to interfaces, not implementation.

Students would benefit from practical experience
of programming to an interface, but will not be
explicitly tested on programming to interfaces
or be required to program to interfaces in any
practical exam.

Be able to write object-oriented programs. Practical experience of coding for user-defined
classes involving:
•• abstract, virtual and static methods
•• inheritance
•• aggregation
•• polymorphism
•• public, private and protected specifiers.

Be able to draw and interpret class diagrams. Class diagrams involving single inheritance,
aggregation, public, private (-) and protected (#)
specifiers.

http://aqa.org.uk/7517

43

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.2 	 Fundamentals of data structures

4.2.1 	Data structures and abstract data types

4.2.1.1 	Data structures

Content Additional information
Be familiar with the concept of data structures. It may be helpful to set the concept of a data

structure in various contexts that students may
already be familiar with. It may also be helpful to
suggest/demonstrate how data structures could
be used in a practical setting.

4.2.1.2 	Single- and multi-dimensional arrays (or equivalent)

Content Additional information
Use arrays (or equivalent) in the design of
solutions to simple problems.

A one-dimensional array is a useful way of
representing a vector. A two-dimensional array
is a useful way of representing a matrix. More
generally, an n-dimensional array is a set of
elements with the same data type that are
indexed by a tuple of n integers, where a tuple is
an ordered list of elements.

4.2.1.3 	Fields, records and files

Content Additional information
Be able to read/write from/to a text file.

Be able to read/write data from/to a binary (non-
text) file.

http://aqa.org.uk/7517

44 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.2.1.4 	Abstract data types/data structures

Content Additional information
Be familiar with the concept and uses of a:
•• queue
•• stack
•• list
•• graph
•• tree
•• hash table
•• dictionary
•• vector.

Be able to use these abstract data types and their
equivalent data structures in simple contexts.

Students should also be familiar with methods for
representing them when a programming language
does not support these structures as built-in
types.

Be able to distinguish between static and dynamic
structures and compare their uses, as well as
explaining the advantages and disadvantages of
each.
Describe the creation and maintenance of data
within:
•• queues (linear, circular, priority)
•• stacks
•• hash tables.

4.2.2 	Queues

4.2.2.1 	Queues

Content Additional information
Be able to describe and apply the following
to linear queues, circular queues and priority
queues:
•• add an item
•• remove an item
•• test for an empty queue
•• test for a full queue.

http://aqa.org.uk/7517

45

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.2.3 	Stacks

4.2.3.1 	Stacks

Content Additional information
Be able to describe and apply the following
operations:
•• push
•• pop
•• peek or top
•• test for empty stack
•• test for stack full.

Peek or top returns the value of the top element
without removing it.

4.2.4 	Graphs

4.2.4.1 	Graphs

Content Additional information
Be aware of a graph as a data structure used to
represent more complex relationships.
Be familiar with typical uses for graphs.

Be able to explain the terms:
•• graph
•• weighted graph
•• vertex/node
•• edge/arc
•• undirected graph
•• directed graph.

Know how an adjacency matrix and an adjacency
list may be used to represent a graph.
Be able to compare the use of adjacency matrices
and adjacency lists.

http://aqa.org.uk/7517

46 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.2.5 	Trees

4.2.5.1 	Trees (including binary trees)

Content Additional information
Know that a tree is a connected, undirected graph
with no cycles.

Note that a tree does not have to have a root.

Know that a rooted tree is a tree in which one
vertex has been designed as the root and every
edge is directed away from the root.
Know that a binary tree is a rooted tree in which
each node has at most two children.

A common application of a binary tree is as a
binary search tree.

Be familiar with typical uses for rooted trees.

4.2.6 	Hash tables

4.2.6.1 	Hash tables

Content Additional information
Be familiar with the concept of a hash table and
its uses.

A hash table is a data structure that creates a
mapping between keys and values.

Be able to apply simple hashing algorithms.

Know what is meant by a collision and how
collisions are handled using rehashing.

A collision occurs when two key values compute
the same hash.

4.2.7 	Dictionaries

4.2.7.1 	Dictionaries

Content Additional information
Be familiar with the concept of a dictionary. A collection of key-value pairs in which the value

is accessed via the associated key.
Be familiar with simple applications of
dictionaries, for example information retrieval,
and have experience of using a dictionary data
structure in a programming language.

Information retrieval:

For example, the document 'The green, green
grass grows' would be represented by the
dictionary:

{‘grass’ : 1, ‘green’ : 2, ‘grows’ : 1, ‘the’ : 1}
ignoring letter case.

http://aqa.org.uk/7517

47

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.2.8 	Vectors

4.2.8.1 	Vectors

Content Additional information
Be familiar with the concept of a vector and the
following notations for specifying a vector:
•• [2.0, 3.14159, -1.0, 2.718281828]
•• 4-vector over ℝ written as ℝ4

•• function interpretation
•• 0 ↦ 2.0
•• 1 ↦ 3.14159
•• 2 ↦ -1.0
•• 3 ↦ 2.718281828
•• ↦ means maps to

That all the entries must be drawn from the same
field, eg ℝ.

A vector can be represented as a list of numbers,
as a function and as a way of representing a
geometric point in space.

A dictionary is a useful way of representing a
vector if a vector is viewed as a function.

f : S → ℝ

the set S = {0,1,2,3} and the co-domain, ℝ, the set
of Reals

For example, in Python the 4-vector example
could be represented as a dictionary as follows:
{0:2.0, 1:3.14159, 2:-1.0, 3:2.718281828}

Dictionary representation of a vector. See above.
List representation of a vector. For example, in Python, a 2-vector over ℝ would

be written as [2.0,3.0].
1-D array representation of a vector. For example in VB.Net, a 4-vector over ℝ would

be written as Dim example(3) As Single.

Visualising a vector as an arrow. For example a 2-vector [2.0, 3.0] over ℝ can be
represented by an arrow with its tail at the origin
and its head at (2.0, 3.0).

Vector addition and scalar-vector multiplication. Know that vector addition achieves translation
and scalar-vector multiplication achieves scaling.

Convex combination of two vectors, u and v. Is an expression of the form αu + βv where α, β ≥
0 and α + β = 1

Dot or scalar product of two vectors. The dot product of two vectors, u and v,

u = [u1, …., un] and v = [v1, ….., vn] is

u ∙ v = u1v1 + u2v2 + …… + unvn

http://aqa.org.uk/7517

48 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Content Additional information
Applications of dot product. Generating parity given two vectors u and v over

GF(2) :

u = [1, 1, 1, 1] and v = [1, 0, 1, 1]

u ∙ v = 1

where GF(2) has two elements, 0 and 1.
Arithmetic over GF(2) can be summarised in two
small tables:

* 0 1

0 0 0

1 0 1

This can be achieved by bitwise AND operation.

+ 0 1

0 0 1

1 1 0

This can be achieved by bitwise XOR operation.

Subtraction is identical to addition, -1 = 1 and -0
= 0.

http://aqa.org.uk/7517

49

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.3 	 Fundamentals of algorithms

4.3.1 	Graph-traversal

4.3.1.1 	Simple graph-traversal algorithms

Content Additional information
Be able to trace breadth-first and depth-
first search algorithms and describe typical
applications of both.

Breadth-first: shortest path for an unweighted
graph.

Depth-first: Navigating a maze.

4.3.2 	Tree-traversal

4.3.2.1 	Simple tree-traversal algorithms

Content Additional information
Be able to trace the tree-traversal algorithms:
•• pre-order
•• post-order
•• in-order.

Pre-order is a depth-first traversal.

Post-order is a breadth-first traversal.

Be able to describe uses of tree-traversal
algorithms.

Pre-Order: copying a tree, producing prefix
expression from an expression tree.

In-Order: binary search tree.

Post-Order: Infix to RPN (Reverse Polish
Notation) conversions, producing a postfix
expression from an expression tree, emptying a
tree.

4.3.3 	Reverse Polish

4.3.3.1 	Reverse Polish – infix transformations

Content Additional information
Be able to convert simple expressions in infix
form to Reverse Polish notation (RPN) form and
vice versa. Be aware of why and where it is used.

Eliminates need for brackets in sub-expressions.

Expressions in a form suitable for evaluation
using a stack.

Used in interpreters based on a stack for example
Postscript and bytecode.

http://aqa.org.uk/7517

50 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.3.4 	Searching algorithms

4.3.4.1 	Linear search

Content Additional information
Know and be able to trace and analyse the
complexity of the linear search algorithm.

Time complexity is O(n).

4.3.4.2 	Binary search

Content Additional information
Know and be able to trace and analyse the time
complexity of the binary search algorithm.

Time complexity is O(log n).

4.3.4.3 	Binary tree search

Content Additional information
Be able to trace and analyse the time complexity
of the binary tree search algorithm.

Time complexity is O(log n).

4.3.5 	Sorting algorithms

4.3.5.1 	Bubble sort

Content Additional information
Know and be able to trace and analyse the time
complexity of the bubble sort algorithm.

This is included as an example of a particularly
inefficient sorting algorithm, time-wise. Time
complexity is O(n2).

4.3.5.2 	Merge sort

Content Additional information
Be able to trace and analyse the time complexity
of the merge sort algorithm.

The 'merge' sort is an example of 'Divide and
Conquer' approach to problem solving. It’s time
complexity is O(nlog n).

4.3.6 	Optimisation algorithms

4.3.6.1 	Dijkstra’s shortest path algorithm

Content Additional information
Understand and be able to trace Dijkstra’s
shortest path algorithm.

Be aware of applications of shortest path
algorithm.

Students will not be expected to recall the steps
in Dijkstra's shortest path algorithm.

http://aqa.org.uk/7517

51

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4 	 Theory of computation

4.4.1 	Abstraction and automation

4.4.1.1 	Problem-solving

Content Additional information
Be able to develop solutions to simple logic
problems.
Be able to check solutions to simple logic
problems.

4.4.1.2 	Following and writing algorithms

Content Additional information
Understand the term algorithm. A sequence of steps that can be followed to

complete a task and that always terminates.
Be able to express the solution to a simple
problem as an algorithm using pseudo-code, with
the standard constructs:
•• sequence
•• assignment
•• selection
•• iteration.

Be able to hand-trace algorithms.

Be able to convert an algorithm from pseudo-
code into high level language program code.
Be able to articulate how a program works,
arguing for its correctness and its efficiency using
logical reasoning, test data and user feedback.

4.4.1.3 	Abstraction

Content Additional information
Be familiar with the concept of abstraction as
used in computations and know that:
•• representational abstraction is a representation

arrived at by removing unnecessary details
•• abstraction by generalisation or categorisation

is a grouping by common characteristics to
arrive at a hierarchical relationship of the 'is a
kind of' type.

http://aqa.org.uk/7517

52 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.1.4 	Information hiding

Content Additional information
Be familiar with the process of hiding all details
of an object that do not contribute to its essential
characteristics.

4.4.1.5 	Procedural abstraction

Content Additional information
Know that procedural abstraction represents a
computational method.

The result of abstracting away the actual
values used in any particular computation is a
computational pattern or computational method -
a procedure.

4.4.1.6 	Functional abstraction

Content Additional information
Know that for functional abstraction the particular
computation method is hidden.

The result of a procedural abstraction is a
procedure, not a function. To get a function
requires yet another abstraction, which disregards
the particular computation method. This is
functional abstraction.

4.4.1.7 	Data abstraction

Content Additional information
Know that details of how data are actually
represented are hidden, allowing new kinds of
data objects to be constructed from previously
defined types of data objects.

Data abstraction is a methodology that enables
us to isolate how a compound data object is used
from the details of how it is constructed.

For example, a stack could be implemented as an
array and a pointer for top of stack.

4.4.1.8 	Problem abstraction/reduction

Content Additional information
Know that details are removed until the problem
is represented in a way that is possible to solve,
because the problem reduces to one that has
already been solved.

4.4.1.9 	Decomposition

Content Additional information
Know that procedural decomposition
means breaking a problem into a number
of sub-problems, so that each sub-problem
accomplishes an identifiable task, which might
itself be further subdivided.

http://aqa.org.uk/7517

53

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.1.10 Composition

Content Additional information
Know how to build a composition abstraction
by combining procedures to form compound
procedures.
Know how to build data abstractions by combining
data objects to form compound data, for example
tree data structure.

4.4.1.11 Automation

Content Additional information
Understand that automation requires putting
models (abstraction of real world objects/
phenomena) into action to solve problems. This is
achieved by:
•• creating algorithms
•• implementing the algorithms in program code

(instructions)
•• implementing the models in data structures
•• executing the code.

Computer science is about building clean abstract
models (abstractions) of messy, noisy, real world
objects or phenomena. Computer scientists have
to choose what to include in models and what
to discard, to determine the minimum amount
of detail necessary to model in order to solve a
given problem to the required degree of accuracy.

Computer science deals with putting the models
into action to solve problems. This involves
creating algorithms for performing actions on, and
with, the data that has been modelled.

4.4.2 	Regular languages

4.4.2.1 	Finite state machines (FSMs) with and without output

Content Additional information
Be able to draw and interpret simple state
transition diagrams and state transition tables
for FSMs with no output and with output (Mealy
machines only).

http://aqa.org.uk/7517

54 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.2.2 	Maths for regular expressions

Content Additional information
Be familiar with the concept of a set and the
following notations for specifying a set:

A = {1, 2, 3, 4, 5 }

or set comprehension:

A = {x | x ∈ ℕ ∧ x ≥ 1 }

where A is the set consisting of those objects x
such that x ∈ ℕ and x ≥ 1 is true.

Know that the empty set, {}, is the set with no
elements.

Know that an alternative symbol for the empty set
is Ø.

A set is an unordered collection of values in which
each value occurs at most once.

Several languages support set construction.

In Python, for example, use of curly braces
constructs a set:

{1, 2, 3 }.

| means such that.

x ∈ ℕ means that x is a member of the set ℕ
consisting of the natural numbers, ie {0, 1, 2, 3, 4,
… }.

The symbol ∧ means AND.

The term ∧ x > = 1 means AND x is greater than
or equal to 1.

In Python, {2 ∗ x for x in {1, 2, 3 }} constructs {2, 4,
6 }.

This is said to be a set comprehension over the
set {1, 2, 3 } .

Be familiar with the compact representation of a
set, for example, the set {0n1n | n ≥ 1}. This set
contains all strings with an equal number of 0 s
and 1s.

For example,

{0n1n | n ≥ 1} = {01, 0011, 000111, 00001111, … }

Be familiar with the concept of:
•• finite sets
•• infinite sets
•• countably infinite sets
•• cardinality of a finite set
•• Cartesian product of sets.

A finite set is one whose elements can be counted
off by natural numbers up to a particular number,
for example as:

1st element, 2nd element, …, 20th (and final)
element.

The set of natural numbers, ℕ and the set of real
numbers, ℝ are examples of infinite sets.

A countably infinite set is one that can be counted
off by the natural numbers.

The set of real numbers is not countable. The
cardinality of a finite set is the number of elements
in a set. Cartesian product of two sets, X and Y,
written X x Y and read 'X cross Y', is the set of all
ordered pairs (a, b) where a is a member of A and
b is a member of B.

http://aqa.org.uk/7517

55

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Content Additional information
Be familiar with the meaning of the term:
•• subset
•• proper subset
•• countable set.

{0, 1 , 2 } ⊂ ℕ where ⊂ means proper subset of,
that is ℕ contains everything in {0, 1, 2 } but there
is at least one element in ℕ that is not in {0, 1, 2 }.

{0, 1 , 2 } ⊆ {0, 1, 2, 3 } where ⊆ means subset of.

⊆ includes both ⊂ and =, for example

{0, 1, 2, 3 } ⊆ {0, 1, 2, 3 } is also true, because

{0, 1, 2, 3 } = {0, 1, 2, 3 }. A countable set is a set
with the same cardinality (number of elements) as
some subset of natural numbers.

Be familiar with the set operations:
•• membership
•• union
•• intersection
•• difference.

4.4.2.3 	Regular expressions

Content Additional information
Know that a regular expression is simply a way
of describing a set and that regular expressions
allow particular types of languages to be
described in a convenient shorthand notation.

For example, the regular expression a(a|b)*
generates the set of strings {a, aa, ab, aaa, aab,
aba, …}.

Be able to form and use simple regular
expressions for string manipulation and matching.
Be able to describe the relationship between
regular expressions and FSMs.

Regular expressions and FSMs are equivalent
ways of defining a regular language.

Be able to write a regular expression to recognise
the same language as a given FSM and vice
versa.

A student's ability to write very simple regular
expressions and FSMs will be assessed.

4.4.2.4 	Regular language

Content Additional information
Know that a language is called regular if it can be
represented by a regular expression.

Also, a regular language is any language that a
FSM will accept.

http://aqa.org.uk/7517

56 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.3 	Context-free languages

4.4.3.1 	Backus-Naur Form (BNF)/syntax diagrams

Content Additional information
Be able to check language syntax by referring
to BNF or syntax diagrams and formulate simple
production rules.
Be able to explain why BNF can represent some
languages that cannot be represented using
regular expressions.

4.4.4 	Classification of algorithms

4.4.4.1 	Comparing algorithms

Content Additional information
Understand that algorithms can be compared by
expressing their complexity as a function relative
to the size of the problem. Understand that the
size of the problem is the key issue.
Understand that some algorithms are more
efficient:
•• time-wise than other algorithms
•• space-wise than other algorithms.

Efficiently implementing automated abstractions
means designing data models and algorithms to
run quickly while taking up the minimal amount of
resources such as memory.

4.4.4.2 	Maths for understanding Big-0 notation

Content Additional information
Be familiar with the mathematical concept of a
function as a mapping from one set of values, the
domain, to another set of values, drawn from the
co-domain, for example ℕ → ℕ.
Be familiar with the concept of:
•• a linear function, for example y = 2x
•• a polynomial function, for example y = 2x2

•• an exponential function, for example y = 2x

•• a logarithmic function, for example y = log10 x.
Be familiar with the notion of permutation of a set
of objects or values, for example, the letters of a
word and that the permutation of n distinct objects
is n factorial (n!).

n! is the product of all positive integers less than
or equal to n.

http://aqa.org.uk/7517

57

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.4.3 	Order of complexity

Content Additional information
Be familiar with Big-O notation to express time
complexity and be able to apply it to cases where
the running time requirements of the algorithm
grow in:
•• constant time
•• logarithmic time
•• linear time
•• polynomial time
•• exponential time.

Be able to derive the time complexity of an
algorithm.

4.4.4.4 	Limits of computation

Content Additional information
Be aware that algorithmic complexity and
hardware impose limits on what can be
computed.

4.4.4.5 	Classification of algorithmic problems

Content Additional information
Know that algorithms may be classified as being
either:
•• tractable – problems that have a polynomial

(or less) time solution are called tractable
problems.

•• intractable – problems that have no polynomial
(or less) time solution are called intractable
problems.

Heuristic methods are often used when tackling
intractable problems.

4.4.4.6 	Computable and non-computable problems

Content Additional information
Be aware that some problems cannot be solved
algorithmically.

http://aqa.org.uk/7517

58 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.4.4.7 	Halting problem

Content Additional information
Describe the Halting problem (but not prove it),
that is the unsolvable problem of determining
whether any program will eventually stop if given
particular input.
Understand the significance of the Halting
problem for computation.

The Halting problem demonstrates that there
are some problems that cannot be solved by a
computer.

4.4.5 	A model of computation

4.4.5.1 	Turing machine

Content Additional information
Be familiar with the structure and use of Turing
machines that perform simple computations.
Know that a Turing machine can be viewed as a
computer with a single fixed program, expressed
using:
•• a finite set of states in a state transition

diagram
•• a finite alphabet of symbols
•• an infinite tape with marked-off squares
•• a sensing read-write head that can travel along

the tape, one square at a time.

One of the states is called a start state and states
that have no outgoing transitions are called
halting states.

Exam questions will only be asked about Turing
machines that have one tape that is infinite in one
direction.

Understand the equivalence between a transition
function and a state transition diagram.
Be able to:
•• represent transition rules using a transition

function
•• represent transition rules using a state

transition diagram
•• hand-trace simple Turing machines.

Be able to explain the importance of Turing
machines and the Universal Turing machine to
the subject of computation.

Turing machines provide a (general/formal) model
of computation and provide a definition of what is
computable.

http://aqa.org.uk/7517

59

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5 	 Fundamentals of data representation

4.5.1 	Number systems

4.5.1.1 	Natural numbers

Content Additional information
Be familiar with the concept of a natural number
and the set ℕ of natural numbers (including zero).

ℕ = {0, 1, 2, 3, … }

4.5.1.2 	Integer numbers

Content Additional information
Be familiar with the concept of an integer and the
set ℤ of integers.

ℤ = { …, -3, -2, -1, 0, 1, 2, 3, … }

4.5.1.3 	Rational numbers

Content Additional information
Be familiar with the concept of a rational number
and the set ℚ of rational numbers, and that this
set includes the integers.

ℚ is the set of numbers that can be written as
fractions (ratios of integers). Since a number such
as 7 can be written as 7/1, all integers are rational
numbers.

4.5.1.4 	Irrational numbers

Content Additional information
Be familiar with the concept of an irrational
number.

An irrational number is one that cannot be written
as a fraction, for example √2.

4.5.1.5 	Real numbers

Content Additional information
Be familiar with the concept of a real number and
the set ℝ of real numbers, which includes the
natural numbers, the rational numbers and the
irrational numbers.

ℝ is the set of all 'possible real world quantities'.

4.5.1.6 	Ordinal numbers

Content Additional information
Be familiar with the concept of ordinal numbers
and their use to describe the numerical positions
of objects.

When objects are placed in order, ordinal
numbers are used to tell their position. For
example, if we have a well-ordered set S = {‘a’,
‘b’, ‘c’, ‘d’}, then ‘a’ is the 1st object, ‘b’ the 2nd,
and so on.

http://aqa.org.uk/7517

60 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.1.7 	Counting and measurement

Content Additional information
Be familiar with the use of:
•• natural numbers for counting
•• real numbers for measurement.

4.5.2 	Number bases

4.5.2.1 	Number base

Content Additional information
Be familiar with the concept of a number base, in
particular:
•• decimal (base 10)
•• binary (base 2)
•• hexadecimal (base 16).

Students should be familiar with expressing a
number’s base using a subscript as follows:

Base 10: Number10, eg 6710

Base 2: Number2, eg 100110112

Base 16: Number16, eg AE16

Convert between decimal, binary and
hexadecimal number bases.
Be familiar with, and able to use, hexadecimal as
a shorthand for binary and to understand why it is
used in this way.

4.5.3 	Units of information

4.5.3.1 	Bits and bytes

Content Additional information
Know that:
•• the bit is the fundamental unit of information
•• a byte is a group of 8 bits.

A bit is either 0 or 1.

Know that the 2n different values can be
represented with n bits.

For example, 3 bits can be configured in 23 = 8
different ways.

000, 001, 010, 011, 100, 101, 110, 111

http://aqa.org.uk/7517

61

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.3.2 	Units

Content Additional information
Know that quantities of bytes can be described
using binary prefixes representing powers of 2 or
using decimal prefixes representing powers of 10,
eg one kibibyte is written as 1KiB = 210 B and one
kilobyte is written as 1 kB = 103 B.

Know the names, symbols and corresponding
powers of 2 for the binary prefixes:
•• kibi, Ki - 210

•• mebi, Mi - 220

•• gibi, Gi - 230

•• tebi, Ti - 240

Know the names, symbols and corresponding
powers of 10 for the decimal prefixes:
•• kilo, k - 103

•• mega, M - 106

•• giga, G - 109

•• tera, T - 1012

Historically the terms kilobyte, megabyte, etc
have often been used when kibibyte, mebibyte,
etc are meant.

4.5.4 	Binary number system

4.5.4.1 	Unsigned binary

Content Additional information
Know the difference between unsigned binary and
signed binary.

Students are expected to be able to convert
between unsigned binary and decimal and vice
versa.

Know that in unsigned binary the minimum and
maximum values for a given number of bits, n,
are 0 and 2n -1 respectively.

4.5.4.2 	Unsigned binary arithmetic

Content Additional information
Be able to:
•• add two unsigned binary integers
•• multiply two unsigned binary integers.

http://aqa.org.uk/7517

62 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.4.3 	Signed binary using two’s complement

Content Additional information
Know that signed binary can be used to represent
negative integers and that one possible coding
scheme is two’s complement.

This is the only representation of negative
integers that will be examined. Students are
expected to be able to convert between signed
binary and decimal and vice versa.

Know how to:
•• represent negative and positive integers in

two’s complement
•• perform subtraction using two’s complement
•• calculate the range of a given number of bits,

n.

4.5.4.4 	Numbers with a fractional part

Content Additional information
Know how numbers with a fractional part can be
represented in:
•• fixed point form in binary in a given number of

bits
•• floating point form in binary in a given number

of bits.

Students are not required to know the Institute
of Electrical and Electronic Engineers (IEEE)
standard, only to know, understand and be able to
use a simplified floating representation consisting
of mantissa + exponent.

Be able to convert for each representation from:
•• decimal to binary of a given number of bits
•• binary to decimal of a given number of bits.

Exam questions on floating point numbers will use
a format in which both the mantissa and exponent
are represented using two's complement.

4.5.4.5 	Rounding errors

Content Additional information
Know and be able to explain why both fixed
point and floating point representation of decimal
numbers may be inaccurate.

Use binary fractions. For a real number to be
represented exactly by the binary number system,
it must be capable of being represented by a
binary fraction in the given number of bits. Some
values cannot ever be represented exactly, for
example 0.110.

http://aqa.org.uk/7517

63

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.4.6 	Absolute and relative errors

Content Additional information
Be able to calculate the absolute error of
numerical data stored and processed in computer
systems.
Be able to calculate the relative error of numerical
data stored and processed in computer systems.
Compare absolute and relative errors for large
and small magnitude numbers, and numbers
close to one.

4.5.4.7 	Range and precision

Content Additional information
Compare the advantages and disadvantages of
fixed point and floating point forms in terms of
range, precision and speed of calculation.

4.5.4.8 	Normalisation of floating point form

Content Additional information
Know why floating point numbers are normalised
and be able to normalise un-normalised
floating point numbers with positive or negative
mantissas.

4.5.4.9 	Underflow and overflow

Content Additional information
Explain underflow and overflow and describe the
circumstances in which they occur.

4.5.5 	Information coding systems

4.5.5.1 	Character form of a decimal digit

Content Additional information
Differentiate between the character code
representation of a decimal digit and its pure
binary representation.

4.5.5.2 	ASCII and Unicode

Content Additional information
Describe ASCII and Unicode coding systems for
coding character data and explain why Unicode
was introduced.

http://aqa.org.uk/7517

64 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.5.3 	Error checking and correction

Content Additional information
Describe and explain the use of:
•• parity bits
•• majority voting
•• checksums
•• check digits.

4.5.6 	Representing images, sound and other data

4.5.6.1 	Bit patterns, images, sound and other data

Content Additional information
Describe how bit patterns may represent other
forms of data, including graphics and sound.

4.5.6.2 	Analogue and digital

Content Additional information
Understand the difference between analogue and
digital:
•• data
•• signals.

4.5.6.3 	Analogue/digital conversion

Content Additional information
Describe the principles of operation of:
•• an analogue to digital converter (ADC)
•• a digital to analogue converter (DAC).

Know that ADCs are used with analogue sensors.

Know that the most common use for a DAC is
to convert a digital audio signal to an analogue
signal.

http://aqa.org.uk/7517

65

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.6.4 	Bitmapped graphics

Content Additional information
Explain how bitmaps are represented.

Explain the following for bitmaps:
•• resolution
•• colour depth
•• size in pixels.

Resolution of an image is expressed directly as
width of image in pixels by height of image in
pixels using notation width x height.

Alternatively, resolution can be expressed in
number of dots per inch where a dot is a pixel.

colour depth = number of bits stored for each
pixel.

resolution in pixels = width in pixels x height in
pixels.

Calculate storage requirements for bitmapped
images and be aware that bitmap image files may
also contain metadata.

Ignoring metadata,

storage requirements = resolution x colour depth

where resolution is expressed in width in pixels x
height in pixels.

Be familiar with typical metadata. eg width, height, colour depth.

4.5.6.5 	Vector graphics

Content Additional information
Explain how vector graphics represents images
using lists of objects.

The properties of each geometric object/shape in
the vector graphic image are stored as a list.

Give examples of typical properties of objects.

Use vector graphic primitives to create a simple
vector graphic.

4.5.6.6 	Vector graphics versus bitmapped graphics

Content Additional information
Compare the vector graphics approach with the
bitmapped graphics approach and understand the
advantages and disadvantages of each.
Be aware of appropriate uses of each approach.

http://aqa.org.uk/7517

66 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.6.7 	Digital representation of sound

Content Additional information
Describe the digital representation of sound in
terms of:
•• sample resolution
•• sampling rate and the Nyquist theorem.

Calculate sound sample sizes in bytes.

4.5.6.8 	Musical Instrument Digital Interface (MIDI)

Content Additional information
Describe the purpose of MIDI and the use of
event messages in MIDI.
Describe the advantages of using MIDI files for
representing music.

4.5.6.9 	Data compression

Content Additional information
Know why images and sound files are often
compressed and that other files, such as text
files, can also be compressed.
Understand the difference between lossless and
lossy compression and explain the advantages
and disadvantages of each.
Explain the principles behind the following
techniques for lossless compression:
•• run length encoding (RLE)
•• dictionary-based methods.

http://aqa.org.uk/7517

67

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.5.6.10 Encryption

Content Additional information
Understand what is meant by encryption and be
able to define it.

Students should be familiar with the terms cipher,
plaintext and ciphertext.

Caesar and Vernam ciphers are at opposite
extremes. One offers perfect security, the other
doesn’t. Between these two types are ciphers that
are computationally secure – see below. Students
will be assessed on the two types. Ciphers other
than Caesar may be used to assess students'
understanding of the principles involved. These
will be explained and be similar in terms of
computational complexity.

Be familiar with Caesar cipher and be able to
apply it to encrypt a plaintext message and
decrypt a ciphertext.

Be able to explain why it is easily cracked.
Be familiar with Vernam cipher or one-time pad
and be able to apply it to encrypt a plaintext
message and decrypt a ciphertext.

Explain why Vernam cipher is considered as a
cypher with perfect security.

Since the key k is chosen uniformly at random,
the ciphertext c is also distributed uniformly.
The key k must be used once only. The key k is
known as a one-time pad.

Compare Vernam cipher with ciphers that depend
on computational security.

Vernam cipher is the only one to have been
mathematically proved to be completely secure.
The worth of all other ciphers ever devised is
based on computational security. In theory, every
cryptographic algorithm except for Vernam cipher
can be broken, given enough ciphertext and time.

http://aqa.org.uk/7517

68 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.6 	 Fundamentals of computer systems

4.6.1 	Hardware and software

4.6.1.1 	Relationship between hardware and software

Content Additional information
Understand the relationship between hardware
and software and be able to define the terms:
•• hardware
•• software.

4.6.1.2 	Classification of software

Content Additional information
Explain what is meant by:
•• system software
•• application software.

Understand the need for, and attributes of,
different types of software.

4.6.1.3 	System software

Content Additional information
Understand the need for, and functions of the
folowing system software:
•• operating systems (OSs)
•• utility programs
•• libraries
•• translators (compiler, assembler, interpreter).

4.6.1.4 	Role of an operating system (OS)

Content Additional information
Understand that a role of the operating system is
to hide the complexities of the hardware.
Know that the OS handles resource management,
managing hardware to allocate processors,
memories and I/O devices among competing
processes.

http://aqa.org.uk/7517

69

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.6.2 	Classification of programming languages

4.6.2.1 	Classification of programming languages

Content Additional information
Show awareness of the development of types of
programming languages and their classification
into low-and high-level languages.
Know that low-level languages are considered to
be:
•• machine-code
•• assembly language.

Know that high-level languages include
imperative high-level language.
Describe machine-code language and assembly
language.
Understand the advantages and disadvantages
of machine-code and assembly language
programming compared with high-level language
programming.
Explain the term ‘imperative high-level language’
and its relationship to low-level languages.

4.6.3 	Types of program translator

4.6.3.1 	Types of program translator

Content Additional information
Understand the role of each of the following:
•• assembler
•• compiler
•• interpreter.

Explain the differences between compilation and
interpretation. Describe situations in which each
would be appropriate.
Explain why an intermediate language such as
bytecode is produced as the final output by some
compilers and how it is subsequently used.
Understand the difference between source code
and object (executable) code.

http://aqa.org.uk/7517

70 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.6.4 	Logic gates

4.6.4.1 	Logic gates

Content Additional information
Construct truth tables for the following logic gates:
•• NOT
•• AND
•• OR
•• XOR
•• NAND
•• NOR.

Students should know and be able to use ANSI/
IEEE standard 91-1984 Distinctive shape logic
gate symbols for these logic gates.

Be familiar with drawing and interpreting logic
gate circuit diagrams involving one or more of the
above gates.
Complete a truth table for a given logic gate
circuit.
Write a Boolean expression for a given logic gate
circuit.
Draw an equivalent logic gate circuit for a given
Boolean expression.
Recognise and trace the logic of the circuits of a
half-adder and a full-adder.
Construct the circuit for a half-adder.

Be familiar with the use of the edge-triggered
D-type flip-flop as a memory unit.

Knowledge of internal operation of this flip-flop is
not required.

4.6.5 	Boolean algebra

4.6.5.1 	Using Boolean algebra

Content Additional information
Be familiar with the use of Boolean identities and
De Morgan’s laws to manipulate and simplify
Boolean expressions.

http://aqa.org.uk/7517

71

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.7 	 Fundamentals of computer organisation and architecture

4.7.1 	Internal hardware components of a computer

4.7.1.1 	Internal hardware components of a computer

Content Additional information
Have an understanding and knowledge of the
basic internal components of a computer system.

Although exam questions about specific machines
will not be asked, it might be useful to base this
section on the machines used at the centre.

Understand the role of the following components
and how they relate to each other:
•• processor
•• main memory
•• address bus
•• data bus
•• control bus
•• I/O controllers.

Understand the need for, and means of,
communication between components. In
particular, understand the concept of a bus and
how address, data and control buses are used.
Be able to explain the difference between von
Neumann and Harvard architectures and describe
where each is typically used.

Embedded systems such as digital signal
processing (DSP) systems use Harvard
architecture processors extensively.

Von Neumann architecture is used extensively in
general purpose computing systems.

Understand the concept of addressable memory.

4.7.2 	The stored program concept

4.7.2.1 	The meaning of the stored program concept

Content Additional information
Be able to describe the stored program concept:
machine code instructions stored in main memory
are fetched and executed serially by a processor
that performs arithmetic and logical operations.

http://aqa.org.uk/7517

72 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.7.3 	Structure and role of the processor and its components

4.7.3.1 	The processor and its components

Content Additional information
Explain the role and operation of a processor and
its major components:
•• arithmetic logic unit
•• control unit
•• clock
•• general-purpose registers
•• dedicated registers, including:

•• program counter
•• current instruction register
•• memory address register
•• memory buffer register
•• status register.

4.7.3.2 	The Fetch-Execute cycle and the role of registers within it

Content Additional information
Explain how the Fetch-Execute cycle is used to
execute machine code programs including the
stages in the cycle (fetch, decode, execute) and
details of registers used.

http://aqa.org.uk/7517

73

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.7.3.3 	The processor instruction set

Content Additional information
Understand the term ‘processor instruction set’
and know that an instruction set is processor
specific.
Know that instructions consist of an opcode and
one or more operands (value, memory address or
register).

A simple model will be used in which the
addressing mode will be incorporated into the bits
allocated to the opcode so the latter defines both
the basic machine operation and the addressing
mode. Students will not be expected to define
opcode, only interpret opcodes in the given
context of a question.

For example, 4 bits have been allocated to the
opcode (3 bits for basic machine operation, eg
ADD, and 1 bit for the addressing mode). 4 bits
have been allocated to the operand, making the
instruction, opcode + operand, 8 bits in length. In
this example, 16 different opcodes are possible
(24 = 16).

4.7.3.4 	Addressing modes

Content Additional information
Understand and apply immediate and direct
addressing modes.

Immediate addressing: the operand is the datum.

Direct addressing: the operand is the address of
the datum. Address to be interpreted as meaning
either main memory or register.

http://aqa.org.uk/7517

74 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.7.3.5 	Machine-code/assembly language operations

Content Additional information
Understand and apply the basic machine-code
operations of:
•• load
•• add
•• subtract
•• store
•• branching (conditional and unconditional)
•• compare
•• logical bitwise operators (AND, OR, NOT,

XOR)
•• logical

•• shift right
•• shift left

•• halt.

Use the basic machine-code operations above
when machine-code instructions are expressed
in mnemonic form- assembly language, using
immediate and direct addressing.

4.7.3.6 	Interrupts

Content Additional information
Describe the role of interrupts and interrupt
service routines (ISRs); their effect on the Fetch-
Execute cycle; and the need to save the volatile
environment while the interrupt is being serviced.

4.7.3.7 	Factors affecting processor performance

Content Additional information
Explain the effect on processor performance of:
•• multiple cores
•• cache memory
•• clock speed
•• word length
•• address bus width
•• data bus width.

http://aqa.org.uk/7517

75

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.7.4 	External hardware devices

4.7.4.1 	Input and output devices

Content Additional information
Know the main characteristics, purposes and
suitability of the devices and understand their
principles of operation.

Devices that need to be considered are:
•• barcode reader
•• digital camera
•• laser printer
•• RFID.

4.7.4.2 	Secondary storage devices

Content Additional information
Explain the need for secondary storage within a
computer system.
Know the main characteristics, purposes,
suitability and understand the principles of
operation of the following devices:
•• hard disk
•• optical disk
•• solid-state disk (SSD).

SSD = NAND flash memory + a controller that
manages pages, and blocks and complexities
of writing. Based on floating gate transistors
that trap and store charge. A block, made up
of many pages, cannot overwrite pages, page
has to be erased before it can be written to but
technology requires the whole block to be erased.
Lower latency and faster transfer speeds than a
magnetic disk drive.

Compare the capacity and speed of access of
various media and make a judgement about their
suitability for different applications.

http://aqa.org.uk/7517

76 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.8 	 Consequences of uses of computing

4.8.1 	Individual (moral), social (ethical), legal and cultural issues and
opportunities

Content Additional information
Show awareness of current individual (moral),
social (ethical), legal and cultural opportunities
and risks of computing.

Understand that:
•• developments in computer science and the

digital technologies have dramatically altered
the shape of communications and information
flows in societies, enabling massive
transformations in the capacity to:
•• monitor behaviour
•• amass and analyse personal information
•• distribute, publish, communicate and

disseminate personal information
•• computer scientists and software engineers

therefore have power, as well as the
responsibilities that go with it, in the algorithms
that they devise and the code that they deploy

•• software and their algorithms embed moral
and cultural values

•• the issue of scale, for software the whole world
over, creates potential for individual computer
scientists and software engineers to produce
great good, but with it comes the ability to
cause great harm.

Be able to discuss the challenges facing
legislators in the digital age.

Teachers may wish to employ two very powerful
techniques, hypotheticals and case studies, to
engage students in the issues.

Hypotheticals allow students to isolate quickly
important ethical principles in an artificially
simplified context. For example, a teacher might
ask students to explain and defend how, as a
Google project manager, they would evaluate a
proposal to bring Google’s Street View technology
to a remote African village. What questions
should be asked? Who should be consulted?
What benefits, risks and safeguards considered?
What are the trade-offs?

Case studies allow students to confront the tricky
interplay between the sometimes competing
ethical values and principles relevant in real
world settings. For example, the Google Street
View case might be used to tease out the
ethical conflicts between individual and cultural
expectations, the principle of informed consent,
Street View’s value as a service, its potential
impact on human perceptions and behaviours,
and its commercial value to Google and its
shareholders.

There are many resources available on the
Internet to support teaching of this topic.

http://aqa.org.uk/7517

77

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9 	 Fundamentals of communication and networking

4.9.1 	Communication

4.9.1.1 	Communication methods

Content Additional information
Define serial and parallel transmission methods
and discuss the advantages of serial over parallel
transmission.
Define and compare synchronous and
asynchronous data transmission.
Describe the purpose of start and stop bits in
asynchronous data transmission.

4.9.1.2 	Communication basics

Content Additional information
Define:
•• baud rate
•• bit rate
•• bandwidth
•• latency
•• protocol.

Differentiate between baud rate and bit rate. Bit rate can be higher than baud rate if more than
one bit is encoded in each signal change.

Understand the relationship between bit rate and
bandwidth.

Bit rate is directly proportionate to bandwidth.

4.9.2 	Networking

4.9.2.1 	Network topology

Content Additional information
Understand:
•• physical star topology
•• logical bus network topology

and:
•• differentiate between them
•• explain their operation
•• compare each (advantages and

disadvantages).

A network physically wired in star topology can
behave logically as a bus network by using a bus
protocol and appropriate physical switching.

http://aqa.org.uk/7517

78 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9.2.2 	Types of networking between hosts

Content Additional information
Explain the following and describe situations
where they might be used:
•• peer-to-peer networking
•• client-server networking.

In a peer-to-peer network, each computer has
equal status. In a client-server network, most
computers are nominated as clients and one or
more as servers. The clients request services
from the servers, which provide these services,
for example file server, email server.

4.9.2.3 	Wireless networking

Content Additional information
Explain the purpose of WiFi. A wireless local area network that is based on

international standards.

Used to enable devices to connect to a network
wirelessly.

Be familiar with the components required for
wireless networking.

Wireless network adapter.

Wireless access point.
Be familiar with how wireless networks are
secured.

Strong encryption of transmitted data using WPA
(WiFi Protected Access)/WPA2, SSID (Service
Set Identifier) broadcast disabled, MAC (Media
Access Control) address white list.

Explain the wireless protocol Carrier Sense
Multiple Access with Collision Avoidance (CSMA/
CA) with and without Request to Send/Clear to
Send (RTS/CTS).
Be familiar with the purpose of Service Set
Identifier (SSID).

http://aqa.org.uk/7517

79

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9.3 	The Internet

4.9.3.1 	The Internet and how it works

Content Additional information
Understand the structure of the Internet.

Understand the role of packet switching and
routers.
Know the main components of a packet.

Define:
•• router
•• gateway.

Consider where and why they are used.
Explain how routing is achieved across the
Internet.
Describe the term 'uniform resource locator'
(URL) in the context of internetworking.
Explain the terms ‘domain name’ and ‘IP address’.

Describe how domain names are organised.

Understand the purpose and function of the
domain service and its reliance on the Domain
Name Server (DNS) system.
Explain the service provided by Internet registries
and why they are needed.

4.9.3.2 	Internet security

Content Additional information
Understand how a firewall works (packet filtering,
proxy server, stateful inspection).
Explain symmetric and asymmetric (private/public
key) encryption and key exchange.
Explain how digital certificates and digital
signatures are obtained and used.
Discuss worms, trojans and viruses, and the
vulnerabilities that they exploit.
Discuss how improved code quality, monitoring
and protection can be used to address worms,
trojans and viruses.

http://aqa.org.uk/7517

80 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9.4 	The Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol

4.9.4.1 	TCP/IP

Content Additional information
Describe the role of the four layers of the TCP/IP
stack (application, transport, network, link).
Describe the role of sockets in the TCP/IP stack.

Be familiar with the role of MAC (Media Access
Control) addresses.
Explain what the well-known ports and client ports
are used for and the differences between them.

4.9.4.2 	Standard application layer protocols

Content Additional information
Be familiar with the following protocols:
•• FTP (File Transfer Protocol)
•• HTTP (Hypertext Transfer Protocol)
•• HTTPS (Hypertext Transfer Protocol Secure)
•• POP3 (Post Office Protocol (v3))
•• SMTP (Simple Mail Transfer Protocol)
•• SSH (Secure Shell).

Be familiar with FTP client software and an FTP
server, with regard to transferring files using
anonymous and non-anonymous access.
Be familiar with how SSH is used for remote
management.
Know how an SSH client is used to make a TCP
connection to a remote port for the purpose of
sending commands to this port using application
level protocols such as GET for HTTP, SMTP
commands for sending email and POP3 for
retrieving email.
Be familiar with using SSH to log in securely to a
remote computer and execute commands.
Explain the role of an email server in retrieving
and sending email.
Explain the role of a web server in serving up web
pages in text form.
Understand the role of a web browser in retrieving
web pages and web page resources and
rendering these accordingly.

http://aqa.org.uk/7517

81

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9.4.3 	IP address structure

Content Additional information
Know that an IP address is split into a network
identifier part and a host identifier part.

4.9.4.4 	Subnet masking

Content Additional information
Know how a subnet mask is used to identify the
network identifier part of the IP address.

4.9.4.5 	IP standards

Content Additional information
Know that there are currently two standards of IP
address, v4 and v6.
Know why v6 was introduced.

4.9.4.6 	Public and private IP addresses

Content Additional information
Distinguish between routable and non-routable IP
addresses.

4.9.4.7 	Dynamic Host Configuration Protocol (DHCP)

Content Additional information
Understand the purpose and function of the
DHCP system.

4.9.4.8 	Network Address Translation (NAT)

Content Additional information
Explain the basic concept of NAT and why it is
used.

4.9.4.9 	Port forwarding

Content Additional information
Explain the basic concept of port forwarding and
why it is used.

http://aqa.org.uk/7517

82 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.9.4.10 Client server model

Content Additional information
Be familiar with the client server model. Client sends a request message to server, server

responds to request by replying with a response
message to client.

Be familiar with the Websocket protocol and know
why it is used and where it is used.

The Websocket specification defines an API
(Application Programming Interface) establishing
a full-duplex 'socket' connection between a web
browser and a server over TCP. This means that
there is a persistent connection between client
and server, allowing both parties to send data at
any time.

Be familiar with the principles of Web CRUD
Applications and REST:
•• CRUD is an acronym for:

•• C – Create
•• R – Retrieve
•• U – Update
•• D – Delete.

•• REST enables CRUD to be mapped to
database functions (SQL) as follows:
•• GET → SELECT
•• POST → INSERT
•• DELETE → DELETE
•• PUT → UPDATE.

Students should understand the principles:
•• database connected to browser using REST –

Representational State Transfer – which relies
on HTTP request methods

•• REST allows JavaScript to talk to server
through HTTP

•• REST API (Application Programming Interface)
created and run on server, browser Javascript
calls API

•• JSON (JavaScript Object Notation) or XML can
be used to transmit data between a server and
web application

•• Javascript referenced by HTML file, eg
index.html, is run in browser.

Compare JSON (Java script object notation) with
XML.

JSON compared with XML is:
•• easier for a human to read
•• more compact
•• easier to create
•• easier for computers to parse and therefore

quicker to parse.

4.9.4.11 Thin- versus thick-client computing

Content Additional information
Compare and contrast thin-client computing with
thick-client computing.

http://aqa.org.uk/7517

83

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.10 	Fundamentals of databases

4.10.1 Conceptual data models and entity relationship modelling
Content Additional information
Produce a data model from given data
requirements for a simple scenario involving
multiple entities.
Produce entity relationship diagrams representing
a data model and entity descriptions in the form:
Entity1 (Attribute1, Attribute2,).

Underlining can be used to identify the attribute(s)
which form the entity identifier.

4.10.2 Relational databases
Content Additional information
Explain the concept of a relational database.

Be able to define the terms:
•• attribute
•• primary key
•• composite primary key
•• foreign key.

4.10.3 Database design and normalisation techniques
Content Additional information
Normalise relations to third normal form. Students should know what properties are

possessed by a relation in third normal form.
Understand why databases are normalised.

4.10.4 Structured Query Language (SQL)
Content Additional information
Be able to use SQL to retrieve, update, insert and
delete data from multiple tables of a relational
database.
Be able to use SQL to define a database table.

4.10.5 Client server databases
Content Additional information
Know that a client server database system
provides simultaneous access to the database for
multiple clients.

Know how concurrent access can be controlled to
preserve the integrity of the database.

Concurrent access can result in the problem of
updates being lost if two clients edit a record at
the same time. This problem can be managed by
the use of record locks, serialisation, timestamp
ordering, commitment ordering.

http://aqa.org.uk/7517

84 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.11 	Big Data

4.11.1 Big Data
Content Additional information
Know that 'Big Data' is a catch-all term for data
that won't fit the usual containers. Big Data can
be described in terms of:
•• volume – too big to fit into a single server
•• velocity – streaming data, milliseconds to

seconds to respond
•• variety – data in many forms such as

structured, unstructured, text, multimedia.

Whilst its size receives all the attention, the
most difficult aspect of Big Data really involves
its lack of structure. This lack of structure poses
challenges because:
•• analysing the data is made significantly more

difficult
•• relational databases are not appropriate

because they require the data to fit into a row-
and-column format.

Machine learning techniques are needed to
discern patterns in the data and to extract useful
information.

'Big' is a relative term, but size impacts when
the data doesn’t fit onto a single server because
relational databases don’t scale well across
multiple machines.

Data from networked sensors, smartphones,
video surveillance, mouse clicks etc are
continuously streamed.

Know that when data sizes are so big as not to fit
on to a single server:
•• the processing must be distributed across

more than one machine
•• functional programming is a solution, because

it makes it easier to write correct and efficient
distributed code.

Know what features of functional programming
make it easier to write:
•• correct code
•• code that can be distributed to run across

more than one server.

Functional programming languages support:
•• immutable data structures
•• statelessness
•• higher-order functions.

Be familiar with the:
•• fact-based model for representing data
•• graph schema for capturing the structure of the

dataset
•• nodes, edges and properties in graph schema.

Each fact within a fact-based model captures a
single piece of information.

http://aqa.org.uk/7517

85

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.12 	Fundamentals of functional programming

4.12.1 Functional programming paradigm

4.12.1.1 Function type

Content Additional information
Know that a function, f, has a function type

f: A → B (where the type is A → B, A is the
argument type, and B is the result type).

Know that A is called the domain and B is called
the co-domain.

Know that the domain and co-domain are always
subsets of objects in some data type.

Loosely speaking, a function is a rule that, for
each element in some set A of inputs, assigns an
output chosen from set B, but without necessarily
using every member of B. For example,

f: {a,b,c,…z} → {0,1,2,…,25} could use the rule
that maps a to 0, b to 1, and so on, using all
values which are members of set B.

The domain is a set from which the function’s
input values are chosen.

The co-domain is a set from which the function’s
output values are chosen. Not all of the co-
domain’s members need to be outputs.

4.12.1.2 First-class object

Content Additional information
Know that a function is a first-class object in
functional programming languages and in
imperative programming languages that support
such objects. This means that it can be an
argument to another function as well as the result
of a function call.

First-class objects (or values) are objects which
may:
•• appear in expressions
•• be assigned to a variable
•• be assigned as arguments
•• be returned in function calls.

For example, integers, floating-point values,
characters and strings are first class objects in
many programming languages.

http://aqa.org.uk/7517

86 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.12.1.3 Function application

Content Additional information
Know that function application means a function
applied to its arguments.

The process of giving particular inputs to a
function is called function application, for
example add(3,4) represents the application of
the function add to integer arguments 3 and 4.

The type of the function is

f: integer x integer → integer

where integer x integer is the Cartesian product of
the set integer with itself.

Although we would say that function f takes two
arguments, in fact it takes only one argument,
which is a pair, for example (3,4).

4.12.1.4 Partial function application

Content Additional information
Know what is meant by partial function application
for one, two and three argument functions and be
able to use the notations shown opposite.

The function add takes two integers as arguments
and gives an integer as a result. Viewed as
follows in the partial function application scheme:
add: integer → (integer → integer)

The brackets may be dropped so function add
becomes add:
integer → integer → integer

The function add is now viewed as taking one
argument after another and returning a result of
data type integer.

4.12.1.5 Composition of functions

Content Additional information
Know what is meant by composition of
functions.

The operation functional composition combines two
functions to get a new function.

Given two functions

f: A → B

g: B → C

function g ○ f, called the composition of g and f, is a
function whose domain is A and co-domain is C.

If the domain and co-domains of f and g are ℝ, and
f(x) = (x + 2) and g(y) = y3. Then

g ○ f = (x + 2)3

f is applied first and then g is applied to the result
returned by f.

http://aqa.org.uk/7517

87

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.12.2 Writing functional programs

4.12.2.1 Functional language programs

Content Additional information
Show experience of constructing simple
programs in a functional programming
language.

The following is a list of functional programming
languages that could be used:
•• Haskell
•• Standard ML
•• Scheme
•• Lisp.

Other languages with built-in support for
programming in a functional paradigm as well as
other paradigms are:
•• Python
•• F#
•• C#
•• Scala
•• Java 8
•• Delphi XE versions onwards.

Higher-order functions. A function is higher-order if it takes a function as an
argument or returns a function as a result, or does
both.

Have experience of using the following in a
functional programming language:
•• map
•• filter
•• reduce or fold.

map is the name of a higher-order function that
applies a given function to each element of a list,
returning a list of results.

filter is the name of a higher-order function that
processes a data structure, typically a list, in some
order to produce a new data structure containing
exactly those elements of the original data structure
that match a given condition.

reduce or fold is the name of a higher-order function
which reduces a list of values to a single value by
repeatedly applying a combining function to the list
values.

http://aqa.org.uk/7517

88 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.12.3 Lists in functional programming

4.12.3.1 List processing

Content Additional information
Be familiar with representing a list as a
concatenation of a head and a tail.

Know that the head is an element of a list and the
tail is a list.

Know that a list can be empty.

Describe and apply the following operations:
•• return head of list
•• return tail of list
•• test for empty list
•• return length of list
•• construct an empty list
•• prepend an item to a list
•• append an item to a list.

Have experience writing programs for the list
operations mentioned above in a functional
programming language or in a language with
support for the functional paradigm.

For example, in Haskell the list [4, 3, 5] can be
written in the form head:tail where head is the first
item in the list and tail is the remainder of the list.
In the example, we have 4:[3, 5]. We call 4 the
head of the list and [3, 5] the tail.

[] is the empty list.

4.13 	Systematic approach to problem solving

4.13.1 Aspects of software development

4.13.1.1 Analysis

Content Additional information
Be aware that before a problem can be solved, it
must be defined, the requirements of the system
that solves the problem must be established
and a data model created. Requirements of
system must be established by interaction with
the intended users of the system. The process of
clarifying requirements may involve prototyping/
agile approach.

Students should have experience of using
abstraction to model aspects of the external world
in a program.

http://aqa.org.uk/7517

89

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.13.1.2 Design

Content Additional information
Be aware that before constructing a solution,
the solution should be designed and specified,
for example planning data structures for the
data model, designing algorithms, designing an
appropriate modular structure for the solution and
designing the human user interface.

Students should have sufficient experience of
successfully structuring programs into modular
parts with clear documented interfaces to enable
them to design appropriate modular structures for
solutions.

Be aware that design can be an iterative process
involving a prototyping/agile approach.

4.13.1.3 Implementation

Content Additional information
Be aware that the models and algorithms need
to be implemented in the form of data structures
and code (instructions) that a computer can
understand.

Students should have sufficient practice of writing,
debugging and testing programs to enable them
to develop the skills to articulate how programs
work arguing for their correctness and efficiency
using logical reasoning, test data and user
feedback.

Be aware that the final solution may be arrived at
using an iterative process employing prototyping/
an agile approach with a focus on solving the
critical path first.

4.13.1.4 Testing

Content Additional information
Be aware that the implementation must be tested
for the presence of errors, using selected test
data covering normal (typical), boundary and
erroneous data.

Students should have practical experience
of designing and applying test data, normal,
boundary and erroneous to the testing of
programs so that they are familiar with these test
data types and the purpose of testing.

It should also undergo acceptance testing with
the intended user(s) of the system to ensure that
the intended solution meets its specification.

Students will only need to provide evidence of
user feedback not details of the tests carried out
by the end user.

4.13.1.5 Evaluation

Content Additional information
Know the criteria for evaluating a computer
system.

http://aqa.org.uk/7517

90 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14 	Non-exam assessment – the computing practical project

4.14.1 Overview

4.14.1.1 Purpose of the project
The project allows students to develop their practical skills in the context of solving a realistic problem
or carrying out an investigation. The project is intended to be as much a learning experience as a
method of assessment; students have the opportunity to work independently on a problem of interest
over an extended period, during which they can extend their programming skills and deepen their
understanding of computer science.

The most important skill that should be assessed through the project is a student's ability to create
a programmed solution to a problem or investigation. This is recognised by allocating 42 of the 75
available marks to the technical solution and a lower proportion of marks for supporting documentation
to reflect the expectation that reporting of the problem, its analysis, the design of a solution or plan of
an investigation and testing and evaluation will be concise.

4.14.1.2 Types of problem/investigation
Students are encouraged to choose a problem to solve or investigate that will interest them and that
relates to a field that they have some knowledge of. There are no restrictions on the types of problem/
investigation that can be submitted or the development tools (for example programming language) that
can be used. The two key questions to ask when selecting a problem/investigation are:
•• Does the student have existing knowledge of the field, or are they in a position to find out about it?
•• Is a solution to the problem/investigation likely to give the student the opportunity to demonstrate

the necessary degree of technical skill to achieve a mark that reflects their potential?

Some examples of the types of problem to solve or investigate are:
•• a simulation for example, of a business or scientific nature, or an investigation of a well-known

problem such as the game of life
•• a solution to a data processing problem for an organisation, such as membership systems
•• the solution of an optimisation problem, such as production of a rota, shortest-path problems or

route finding
•• a computer game
•• an application of artificial intelligence
•• a control system, operated using a device such as an Arduino board
•• a website with dynamic content, driven by a database back-end
•• an app for a mobile phone or tablet
•• an investigation into an area of computing, such as rendering a three-dimensional world on screen
•• investigating an area of data science using, for example, Twitter feed data or online public data sets
•• investigating machine learning algorithms.

There is an expectation that within a centre, the problems chosen by students to solve or investigate
will be sufficiently different to avoid the work of one student informing the work of another because they
are working on the same problem or investigation. Teachers will be required to record on the Candidate
record form for each student that they have followed this guideline. If in any doubt on whether problems
chosen by students have the potential to raise this issue, please contact your AQA advisor.

Table 1 and Table 2 show the technical skills and coding styles required for an A-level standard project.
If a problem/investigation is selected that is not of A-level standard then the marks available in each
section will be restricted.

http://aqa.org.uk/7517

91

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.1.3 Project documentation structure
The project is assessed in five sections. The table below lists the maximum available mark for each
section of the project:

Section Max mark
1 Analysis 9
2 Documented design 12
3 Technical solution 42
4 Testing 8
5 Evaluation 4
Total 75

For marking purposes, the project documentation should be presented in the order indicated in the
table above. The table does not imply that students are expected to follow a traditional systems life
cycle approach when working on their projects, whereby a preceding stage must be completed before
the next can be tackled. It is recognised that this approach is unsuited to the vast majority of project
work, and that project development is likely to be an iterative process, with earlier parts of the project
being revisited as a result of discoveries made in later parts. Students should be encouraged to start
prototyping and writing code early on in the project process. A recommended strategy is to tackle the
critical path early in the project development process. The critical path is the part of the project that
everything else depends on for a working system or a complete investigation result to be achieved.

4.14.2 Using a level of response mark scheme
Level of response mark schemes are broken down into a number of levels, each of which has a
descriptor. The descriptor for the level shows the average performance for the level. There are a range
of marks in each level. The descriptor for the level represents a typical mid-mark performance in that
level.

Before applying the mark scheme to a student’s project, read it through and annotate it to show the
qualities that are being looked for. You can then apply the mark scheme.

4.14.2.1 Step 1. Determine a level
Start at the lowest level of the mark scheme and use it as a ladder to see whether the performance
in that section of the project meets the descriptor for that level. The descriptor for the level indicates
the different qualities that might be seen in the student’s work for that level. If it meets the lowest level
then go to the next one and decide if it meets this level, and so on, until you have a match between the
level descriptor and the work. With practice and familiarity you will find you will be able to quickly skip
through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the work rather than any small or
specific parts where the student has not performed quite as the level descriptor. If the work covers
different aspects of different levels of the mark scheme you should use a best fit approach for defining
the level and then use the variability of the response to help decide the mark within the level. ie if the
response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3
but be awarded a mark near the top of the level because of the level 4 content.

http://aqa.org.uk/7517

92 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.2.2 Step 2. Determine a mark
Once you have assigned a level you need to decide on the mark. The exemplar materials used for
standardisation will help. This work will have been awarded a mark by AQA. You can compare your
student’s work with the exemplar to determine if it is the same standard, better or worse. You can then
use this to allocate a mark for the work based on AQA's mark on the exemplar.

You may well need to read back through the work as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Work which contains nothing of relevance to the project area being assessed must be awarded no
marks for that area.

4.14.3 Marking criteria

4.14.3.1 Analysis (9 marks)

Level Mark range Description
3 7 – 9 Fully or nearly fully scoped analysis of a real problem, presented in a

way that a third party can understand.

Requirements fully documented in a set of measurable and appropriate
specific objectives, covering all required functionality of the solution or
areas of investigation.

Requirements arrived at by considering, through dialogue, the needs
of the intended users of the system, or recipients of the outcomes for
investigative projects.

Problem sufficiently well modelled to be of use in subsequent stages.
2 4 – 6 Well scoped analysis (but with some omissions that are not serious

enough to undermine later design) of a real problem.

Most, but not all, requirements documented in a set of, in the main,
measurable and appropriate specific objectives that cover most of the
required functionality of a solution or areas of investigation.

Requirements arrived at, in the main, by considering, through dialogue,
the needs of the intended users of the system, or recipients of the
outcomes for investigative projects.

Problem sufficiently well modelled to be of use in subsequent stages.
1 1 – 3 Partly scoped analysis of a problem.

Requirements partly documented in a set of specific objectives, not
all of which are measurable or appropriate for developing a solution.
The required functionality or areas of investigation are only partly
addressed.

Some attempt to consider, through dialogue, the needs of the intended
users of the system, or recipients of the outcomes for investigative
projects.

Problem partly modelled and of some use in subsequent stages.

http://aqa.org.uk/7517

93

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.2 Documented design (12 marks)

Level Mark range Description
4 10 – 12 Fully or nearly fully articulated design for a real problem, that describes

how all or almost all of the key aspects of the solution/investigation are
to be structured/are structured.

3 7 – 9 Adequately articulated design for a real problem that describes
how most of the key aspects of the solution/investigation are to be
structured/are structured.

2 4 – 6 Partially articulated design for a real problem that describes how some
aspects of the solution/investigation are to be structured/are structured.

1 1 – 3 Inadequate articulation of the design of the solution so that it is difficult
to obtain a picture of how the solution/investigation is to be structured/
is structured without resorting to looking directly at the programmed
solution.

4.14.3.3 Technical solution (42 marks)
4.14.3.3.1 	 Completeness of solution (15 marks)

Level Mark range Description
3 11 – 15 A system that meets almost all of the requirements of a solution/an

investigation (ignoring any requirements that go beyond the demands
of A-level).

2 6 – 10 A system that achieves many of the requirements but not all. The
marks at the top end of the band are for systems that include some of
the most important requirements.

1 1 – 5 A system that tackles some aspects of the problem or investigation.

http://aqa.org.uk/7517

94 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.3.2 	 Techniques used (27 marks)

Level Mark
range

Description Additional information

3 19 – 27 The techniques used
are appropriate and
demonstrate a level of
technical skill equivalent to
those listed in Group A in
Table 1.

Program(s)
demonstrate(s) that the
skill required for this
level has been applied
sufficiently to demonstrate
proficiency.

Above average performance: Group A equivalent
algorithms and model programmed more than
well to excellent; all or almost all excellent coding
style characteristics; more than to highly effective
solution.

Average performance: Group A equivalent
algorithms and/or model programmed well;
majority of excellent coding style characteristics;
an effective solution.

Below average performance: Group A equivalent
algorithms and/or model programmed just
adequately to fully adequate; some excellent
coding style characteristics; less than effective to
fairly effective solution.

2 10 – 18 The techniques used
are appropriate and
demonstrate a level of
technical skill equivalent to
those listed in Group B in
Table 1.

Program(s)
demonstrate(s) that the
skill required for this
level has been applied
sufficiently to demonstrate
proficiency.

Above average performance: Group B equivalent
algorithms and model programmed more than
well to excellent; majority of excellent coding
style characteristics; more than to highly effective
solution.

Average performance: Group B equivalent
algorithms and/or model programmed well; some
excellent coding style characteristics; effective
solution.

Below average performance: Group B equivalent
algorithms and/or model programmed just
adequately to fully adequate; all or almost all
relevant good coding style characteristics but
possibly one example at most of excellent
characteristics; less than effective to fairly
effective solution.

1 1 – 9 The techniques used
demonstrate a level of
technical skill equivalent to
those listed in Group C in
Table 1.

Program(s)
demonstrate(s) that the
skill required for this
level has been applied
sufficiently to demonstrate
proficiency.

Above average performance: Group C equivalent
model and algorithms programmed more than
well to excellent; almost all relevant good coding
style characteristics; more than to highly effective
simple solution.

Average performance: Group C equivalent model
and algorithms programmed well; some relevant
good coding style characteristics; effective simple
solution.

Below average performance: Group C equivalent
algorithms and/or model programmed in a
severely limited to limited way; basic coding style
characteristics; trivial to lacking in effectiveness
simple solution.

http://aqa.org.uk/7517

95

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Select the band, 1, 2 or 3 with level of demand description that best matches the techniques and
skill that the student’s program attempts to cover. The emphasis is on what the student has actually
achieved that demonstrates proficiency at this level rather than what the student has set out to use and
do but failed to demonstrate, eg because of poor execution. Check the proficiency demonstrated in the
program. If the student fails to demonstrate proficiency at the initial level of choice, drop down a level
to see if what the student has done demonstrates proficiency at this level for the lower demand until a
match is obtained. Table 1 is indicative of the standard required and is not to be treated as just a list of
things for students to select from and to be automatically credited for including in their work.

As indicated above, having selected the appropriate level for techniques used and proficiency in their
use, the exact mark to award should be determined based upon:
•• the extent to which the criteria for the mark band have been achieved
•• the quality of the coding style that the student has demonstrated (see Table 2 for exemplification of

what is expected)
•• the effectiveness of the solution.

http://aqa.org.uk/7517

96 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.4 Example technical skills
4.14.3.4.1 	 Table 1: Example technical skills

Group Model (including data model/structure) Algorithms
A Complex data model in database (eg several

interlinked tables)

Hash tables, lists, stacks, queues, graphs,
trees or structures of equivalent standard

Files(s) organised for direct access

Complex scientific/mathematical/robotics/
control/business model

Complex user-defined use of object-
orientated programming (OOP) model,
eg classes, inheritance, composition,
polymorphism, interfaces

Complex client-server model

Cross-table parameterised SQL

Aggregate SQL functions

User/CASE-generated DDL script

Graph/Tree Traversal

List operations

Linked list maintenance

Stack/Queue Operations

Hashing

Advanced matrix operations

Recursive algorithms

Complex user-defined algorithms (eg
optimisation, minimisation, scheduling,
pattern matching) or equivalent difficulty

Mergesort or similarly efficient sort

Dynamic generation of objects based on
complex user-defined use of OOP model

Server-side scripting using request and
response objects and server-side extensions
for a complex client-server model

Calling parameterised Web service APIs and
parsing JSON/XML to service a complex
client-server model

http://aqa.org.uk/7517

97

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Group Model (including data model/structure) Algorithms
B Simple data model in database (eg two or

three interlinked tables)

Multi-dimensional arrays

Dictionaries

Records

Text files

File(s) organised for sequential access

Simple scientific/mathematical /robotics/
control/business model

Simple OOP model

Simple client-server model

Single table or non-parameterised SQL

Bubble sort
Binary search

Writing and reading from files

Simple user defined algorithms (eg a range
of mathematical/statistical calculations)

Generation of objects based on simple OOP
model

Server-side scripting using request and
response objects and server-side extensions
for a simple client-server model

Calling Web service APIs and parsing JSON/
XML to service a simple client-server model

C Single-dimensional arrays

Appropriate choice of simple data types

Single table database

Linear search

Simple mathematical calculations (eg
average)

Non-SQL table access

Note that the contents of Table 1 are examples, selected to illustrate the level of demand of the
technical skills that would be expected to be demonstrated in each group. The use of alternative
algorithms and data models is encouraged. If a project cannot easily be marked against Table 1 (for
example, a project with a considerable hardware component) then please consult your AQA non-exam
assessment adviser or provide a full explanation of how you have arrived at the mark for this section
when submitting work for moderation.

http://aqa.org.uk/7517

98 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.4.2 	 Table 2: Coding styles

Style Characteristic
Excellent Modules (subroutines) with appropriate interfaces

Loosely coupled modules (subroutines) – module code interacts with other parts
of the program through its interface only

Cohesive modules (subroutines) – module code does just one thing

Modules(collections of subroutines) – subroutines with common purpose grouped

Defensive programming

Good exception handling
Good Well-designed user interface

Modularisation of code

Good use of local variables

Minimal use of global variables

Managed casting of types

Use of constants

Appropriate indentation

Self-documenting code

Consistent style throughout

File paths parameterised
Basic Meaningful identifier names

Annotation used effectively where required

The descriptions in Table 2 are cumulative, ie for a program to be classified as excellent it would be
expected to exhibit the characteristics listed as excellent, good and basic not just those listed as
excellent.

http://aqa.org.uk/7517

99

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.5 Testing (8 marks)

Level Mark range Description
4 7 – 8 Clear evidence, in the form of carefully selected representative

samples, that thorough testing has been carried out. This
demonstrates the robustness of the complete or nearly complete
solution/thoroughness of investigation and that the requirements of the
solution/investigation have been achieved.

3 5 – 6 Extensive testing has been carried out, but the evidence presented in
the form of representative samples does not make clear that all of the
core requirements of the solution/investigation have been achieved.
This may be due to some key aspects not being tested or because the
evidence is not always presented clearly.

2 3 – 4 Evidence in the form of representative samples of moderately
extensive testing, but falling short of demonstrating that the
requirements of the solution/investigation have been achieved and the
solution is robust/investigation thorough.

The evidence presented is explained.
1 1 – 2 A small number of tests have been carried out, which demonstrate that

some parts of the solution work/some outcomes of the investigation
are achieved.

The evidence presented may not be entirely clear.

Evidence for the testing section may be produced after the system has been fully coded or during the
coding process. It is expected that tests will either be planned in a test plan or that the tests will be fully
explained alongside the evidence for them. Only carefully selected representative samples are required.

http://aqa.org.uk/7517

100 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.3.6 Evaluation (4 marks)

Level Mark Description
4 4 Full consideration given to how well the outcome meets all of its

requirements.

How the outcome could be improved if the problem was revisited is
discussed and given detailed consideration.

Independent feedback obtained of a useful and realistic nature,
evaluated and discussed in a meaningful way.

3 3 Full or nearly full consideration given to how well the outcome meets
all of its requirements.

How the outcome could be improved if the problem was revisited is
discussed but consideration given is limited.

Independent feedback obtained of a useful and realistic nature but is
not evaluated and discussed in a meaningful way, if at all.

2 2 The outcome is discussed but not all aspects are fully addressed either
by omission or because some of the requirements have not been met
and those requirements not met have been ignored in the evaluation.

No independent feedback obtained or if obtained is not sufficiently
useful or realistic to be evaluated in a meaningfully way even if
attempted.

1 1 Some of the outcomes are assessed but only in a superficial way.

No independent feedback obtained or if obtained is so basic as to be
not worthy of evaluation.

4.14.4 Project tasks that are not of A-level standard
If the task (problem or investigation) selected for a project is not of A-level standard, mark the project
against the criteria given, but adjust, the mark awarded downwards by two marking levels (two marks
in the case of evaluation) in each section for all but the technical solution. You should have already
taken the standard into account for this, by directly applying the criteria. For example, if a student
had produced a 'fully or nearly fully articulated design of a real problem describing how solution is to
be structured/is structured'. This would, for an A-level standard project, achieve a mark in level 4 for
Documented Design (10 – 12 marks). If the problem selected was too simple to be of A-level standard
but the same criteria had been fulfilled, shift the mark awarded down by two levels, into level 2, an
award of 4 – 6 marks. If a downward shift by two levels is not possible, then a mark in the lowest level
should be awarded.

http://aqa.org.uk/7517

101

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.5 Guide to non-exam assessment documentation

4.14.5.1 Analysis
Students are expected to:
•• produce a clear statement that describes the problem area and specific problem that is being

solved/investigated
•• outline how they researched the problem
•• state for whom the problem is being solved/investigated
•• provide background in sufficient detail for a third party to understand the problem being solved/

investigated
•• produce a numbered list of measurable, "appropriate" specific objectives, covering all required

functionality of the solution or areas of investigation (Appropriate means that the specific objectives
are single purpose and at a level of detail that is without ambiguity)

•• report any modelling of the problem that will inform the Design stage, for example a graph/network
model of Facebook connections or an E-R model.

A fully scoped analysis is one that has:
•• researched the problem thoroughly
•• has clearly defined the problem being solved/investigated
•• omitted nothing that is relevant to subsequent stages
•• statements of objectives which clearly and unambiguously identify the scope of the project
•• modelled the problem for the Design stage where this is possible and necessary.

4.14.5.2 Design
Students are expected to articulate their design in a manner appropriate to the task and with sufficient
clarity for a third party to understand how the key aspects of the solution/investigation are structured
and on what the design will rely, eg use of numerical and scientific package libraries, data visualisation
package library, particular relational database and/or web design framework. The emphasis is on
communicating the design; therefore it is acceptable to provide a description of the design in a
combination of diagrams and prose as appropriate, as well as a description of algorithms, SQL, data
structures, database relations as appropriate, and using relevant technical description languages,
such as pseudo-code. Where design of a user interface is relevant, screen shots of actual screens are
acceptable.

4.14.5.3 Technical solution
Students should provide program listing(s) that demostrate their technical skill. The program listing(s)
should be appropriately annotated and self-documenting (an approach that uses meaningful identifiers,
with well structured code that minimises instances where program comments are necessary).

Students should present their work in a way that will enable a third party to discern the quality and
purpose of the coding. This could take the form of:
•• an overview guide which amongst other things includes the names of entities such as executables,

data filenames/urls, database names, pathnames so that a third party can, if they so desire, run the
solution/investigation

•• explanations of particularly difficult-to-understand code sections; a careful division of the
presentation of the code listing into appropriately labelled sections to make navigation as easy as
possible for a third party reading the code listing.

Achievement of the latter, to an extent, is linked to the skill in applying a structured approach during the
course of developing the solution or carrying out the investigation.

http://aqa.org.uk/7517

102 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

4.14.5.4 Testing
Students must provide and present in a structured way for example in tabular form, clear evidence of
testing. This should take the form of carefully selected and representative samples, which demonstrate
the robustness of the complete, or nearly complete, solution/thoroughness of investigation and which
demonstrate that the requirements of the solution/investigation have been achieved. The emphasis
should be on producing a representative sample in a balanced way and not on recording every possible
test and test outcome. Students should explain the tests carried out alongside the evidence for them.
This could take the form of:
•• an introduction and overview
•• the test performed
•• its purpose if not self-evident
•• the test data
•• the expected test outcome
•• the actual outcome with a sample of the evidence, for example screen shots of before and after the

test, etc, sampled in order to limit volume.

4.14.5.5 Evaluation
Students should consider and assess how well the outcome meets its requirements. Students should
obtain independent feedback on how well the outcome meets its requirements and discuss this
feedback. Some of this feedback could be generated during prototyping. If so, this feedback, and how/
why it was taken account must be presented and referenced so it can be found easily.

Students should also consider and discuss how the outcome could be improved more realistically if the
problem/investigation were to be revisited.

4.14.6 Assessment objective breakdown for non-exam assessment
Section Total AO2 AO3 Elements
Analysis 9 9 AO2b
Design 12 12 AO3a
Technical Solution 42 42 AO3b
Testing 8 8 AO3c
Evaluation 4 4 AO3c
Totals 75 9 66

http://aqa.org.uk/7517

103

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

5 	Scheme of assessment
Find past papers and mark schemes, and specimen papers for new courses, on our website at
aqa.org.uk/pastpapers

The AS specification is designed to be taken over one or two years with all assessments taken at the
end of the course. The A-level specification is designed to be taken over two years with all assessments
taken at the end of the course.

AS exams and certification for these specifications are available for the first time in May/June 2016 and
then every May/June for the life of the specification.

A-level exams and certification for these specifications are available for the first time in May/June 2017
and then every May/June for the life of the specification.

These are linear qualifications. In order to achieve the award, students must complete all exams in May/
June in a single year. All assessments must be taken in the same series.

Our A-level assessments in Computer Science require students to demonstrate their ability to draw
together their knowledge, skills and understanding from across the full course of study. This is evident
in:
•• Paper 1 assessment for extended response questions
•• Paper 2 assessment for extended response questions
•• non-exam assessment.

Paper 2 of our AS assessment includes extended response questions that allow students to
demonstrate their ability to draw together knowledge, skills and understanding from across the full AS
course of study.

Teacher's notes to accompany Paper 1 will be available on e-AQA:
•• for A-level on 1 September in the year of certification
•• for AS on 1 March in the year of certification.

Details of the administration of the exam, including information about issuing the Preliminary material,
Skeleton program and, where appropriate, test data are included in the Teacher's notes.

All materials are available in English only.

http://aqa.org.uk/7517
http://www.aqa.org.uk/pastpapers

104 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

5.1 	 Aims
All specifications in computer science must build on the knowledge, understanding and skills
established at key stage 4 and encourage students to develop a broad range of the knowledge,
understanding and skills of computing, as a basis for progression into further learning and/or
employment.

AS and A-level specifications in computer science must encourage students to develop:
•• an understanding of, and the ability to apply, the fundamental principles and concepts of computer

science, including abstraction, decomposition, logic, algorithms and data representation
•• the ability to analyse problems in computational terms through practical experience of solving such

problems, including writing programs to do so
•• the capacity for thinking creatively, innovatively, analytically, logically and critically
•• the capacity to see relationships between different aspects of computer science
•• mathematical skills related to:

•• Boolean algebra
•• comparison and complexity of algorithms (A-level only)
•• number representations and bases

•• the ability to articulate the individual (moral), social (ethical), legal and cultural opportunities and risks
of digital technology.

5.2 	 Assessment objectives
Assessment objectives (AOs) are set by Ofqual and are the same across all AS and A-level Computer
Science specifications and all exam boards.

The exams will measure how students have achieved the following assessment objectives.
•• AO1: Demonstrate knowledge and understanding of the principles and concepts of computer

science, including abstraction, logic, algorithms and data representation.
•• AO2: Apply knowledge and understanding of the principles and concepts of computer science,

including to analyse problems in computational terms.
•• AO3: Design, program and evaluate computer systems that solve problems, making reasoned

judgements about these and presenting conclusions.

http://aqa.org.uk/7517

105

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Weighting of assessment objectives for AS Computer Science
Assessment objectives (AOs) Component weightings (approx %) Overall weighting

(approx %)Paper 1 Paper 2
AO1 7 28 35
AO2 16 19 35
AO3 27 3 30
Overall weighting of components 50 50 100

Weighting of assessment objectives for A-level Computer Science
Assessment objectives (AO) Component weightings (approx %) Overall weighting

(approx %)Paper 1 Paper 2 NEA
AO1 8 22 0 30
AO2 12 16 2 30
AO3 20 2 18 40
Overall weighting of components 40 40 20 100

5.3 	 Assessment weightings
The marks awarded on the papers will be scaled to meet the weighting of the components. Students'
final marks will be calculated by adding together the scaled marks for each component. Grade
boundaries will be set using this total scaled mark. The scaling and total scaled marks are shown in the
table below.

AS
Component Maximum raw mark Scaling factor Maximum scaled mark
Paper 1 75 x1 75
Paper 2 75 x1 75

Total scaled mark 150

A-level
Component Maximum raw mark Scaling factor Maximum scaled mark
Paper 1 100 x1.5 150
Paper 2 100 x1.5 150
NEA 75 x1 75

Total scaled mark 375

http://aqa.org.uk/7517

106 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

6 	Non-exam assessment
administration

The non-exam assessment (NEA) for A-level only is a computing practical project.

Visit aqa.org.uk/7517 for detailed information about all aspects of NEA administration.

The head of the school or college is responsible for making sure that NEA is conducted in line with our
instructions and Joint Council for Qualifications (JCQ) instructions.

6.1 	 Supervising and authenticating
To meet Ofqual's qualification and subject criteria:
•• students must sign the Candidate record form to confirm that the work submitted is their own
•• all teachers who have marked a student’s work must sign the declaration of authentication on the

Candidate record form. This is to confirm that the work is solely that of the student concerned and
was conducted under the conditions laid down by this specification

•• teachers must ensure that a Candidate record form is attached to each student’s work.

Students must have sufficient direct supervision to ensure that the work submitted can be confidently
authenticated as their own. This means that you must review the progress of the work during research,
planning and throughout its production to see how it evolves.

You may provide guidance and support to students so that they are clear about the requirements of the
task they need to undertake and the marking criteria on which the work will be judged. You may also
provide guidance to students on the suitability of their proposed task, particularly if it means they will
not meet the requirements of the marking criteria.

When checking drafts of a student’s work, you must not comment or provide suggestions on how they
could improve it. However, you can ask questions about the way they are approaching their work and
you can highlight the requirements of the marking criteria.

If a student receives any additional assistance which is acceptable within the further guidance that
is provided for this specification, you should award a mark that represents the student’s unaided
achievement. Please make a note of the support the student received on the Candidate record form.
This will allow the moderator to see whether the student has been awarded an appropriate mark. Please
note that you should sign the authentication statement on the Candidate record form. If the statement is
not signed, we cannot accept the student’s work for assessment.

Once a student submits work for marking and it has been marked, you cannot return it to the student
for improvement, even if they have not received any feedback or are unaware of the marks awarded.

Further guidance on setting, supervising, authenticating and marking work is available on the subject
pages of our website and through teacher standardisation.

http://aqa.org.uk/7517
http://www.aqa.org.uk/7517

107

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

6.2 	 Avoiding malpractice
Please inform your students of the AQA regulations concerning malpractice. They must not:
•• submit work that is not their own
•• lend work to other students
•• allow other students access to, or use of, their own independently-sourced source material
•• include work copied directly from books, the Internet or other sources without acknowledgement
•• submit work that is word-processed by a third person without acknowledgement
•• include inappropriate, offensive or obscene material.

These actions constitute malpractice and a penalty will be given (for example, disqualification).

If you identify malpractice before the student signs the declaration of authentication, you don’t need to
report it to us. Please deal with it in accordance with your school or college’s internal procedures. We
expect schools and colleges to treat such cases very seriously.

If you identify malpractice after the student has signed the declaration of authentication, the head
of your school or college must submit full details of the case to us at the earliest opportunity. Please
complete the form JCQ/M1, available from the JCQ website at jcq.org.uk

You must record details of any work which is not the student’s own on the Candidate record form or
other appropriate place.

You should consult your exams officer about these procedures.

6.3 	 Teacher standardisation
We will provide support for using the marking criteria and developing appropriate tasks through teacher
standardisation.

For further information about teacher standardisation visit our website at aqa.org.uk/7517

In the following situations teacher standardisation is essential. We will send you an invitation to
complete teacher standardisation if:
•• moderation from the previous year indicates a serious misinterpretation of the requirements
•• a significant adjustment was made to the marks in the previous year
•• your school or college is new to this specification.

For further support and advice please speak to your adviser. Email your subject team at
computerscience@aqa.org.uk for details of your adviser.

6.4 	 Internal standardisation
You must ensure that you have consistent marking standards for all students. One person must manage
this process and they must sign the Centre declaration sheet to confirm that internal standardisation
has taken place.

Internal standardisation may involve:
•• all teachers marking some sample pieces of work to identify differences in marking standards
•• discussing any differences in marking at a training meeting for all teachers involved
•• referring to reference and archive material, such as previous work or examples from our teacher

standardisation.

http://aqa.org.uk/7517
http://www.jcq.org.uk/
http://www.aqa.org.uk/7517

108 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

6.5 	 Annotation
To meet Ofqual’s qualification and subject criteria, you must show clearly how marks have been
awarded against the marking criteria in this specification.

Your annotation will help the moderator see, as precisely as possible, where you think the students have
met the marking criteria.

Work can be annotated using either or both of the following methods:
•• flagging evidence in the margins or in the text
•• summative comments, referencing precise sections in the work.

6.6 	 Submitting marks
You should check that the correct marks for each of the marking criteria are written on the Candidate
record form and that the total mark is correct.

The deadline for submitting the total mark for each student is given at aqa.org.uk/keydates

6.7 	 Factors affecting individual students
For advice and guidance about arrangements for any of your students, please email us as early as
possible at eos@aqa.org.uk

Occasional absence: you should be able to accept the occasional absence of students by making sure
they have the chance to make up what they have missed. You may organise an alternative supervised
session for students who were absent at the time you originally arranged.

Lost work: if work is lost you must tell us how and when it was lost and who was responsible, using
our special consideration online service at aqa.org.uk/eaqa

Special help: where students need special help which goes beyond normal learning support, please
use the Candidate record form to tell us so that this help can be taken into account during moderation.

Students who move schools: students who move from one school or college to another during the
course sometimes need additional help to meet the requirements. How you deal with this depends
on when the move takes place. If it happens early in the course, the new school or college should
be responsible for the work. If it happens late in the course, it may be possible to arrange for the
moderator to assess the work as a student who was ‘Educated Elsewhere’.

6.8 	 Keeping students' work
Students’ work must be kept under secure conditions from the time that it is marked, with Candidate
record forms attached. After the moderation period and the deadline for Enquiries about Results (or
once any enquiry is resolved) you may return the work to students.

http://aqa.org.uk/7517
http://www.aqa.org.uk/keydates
http://www.aqa.org.uk/eaqa

109

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

6.9 	 Moderation
An AQA moderator will check a sample of your students’ work. Your moderator will contact you to
let you know which students’ work to send to them. If you are entering fewer than 10 students (or
submitting work electronically) it will be the non-exam assessed work of all your students. Otherwise it
will be a percentage of your students’ non-exam assessed work.

The moderator re-marks the work and compares this with the marks you have provided to check
whether any changes are needed to bring the marking in line with our agreed standards. In some cases
the moderator will ask you to send in more work. Any changes to marks will normally keep your rank
order but, where major inconsistencies are found, we reserve the right to change the rank order.

School and college consortia
If you are in a consortium of schools or colleges with joint teaching arrangements (where students from
different schools and colleges have been taught together but entered through the school or college at
which they are on roll), you must let us know by:
•• filling in the Application for Centre Consortium Arrangements for centre-assessed work, which is

available from the JCQ website jcq.org.uk
•• appointing a consortium co-ordinator who can speak to us on behalf of all schools and colleges in

the consortium. If there are different co-ordinators for different specifications, a copy of the form
must be sent in for each specification.

We will allocate the same moderator to all schools and colleges in the consortium and treat the
students as a single group for moderation.

6.10 	After moderation
We will return your students’ non-exam assessed work to you after the exams. You will also receive
a report when the results are issued, which will give feedback on the appropriateness of the project
undertaken, interpretation of the marking criteria and how students performed in general.

We will give you the final non-exam assessed work marks when the results are issued.

To meet Ofqual requirements, as well as for awarding, archiving or standardisation purposes, we may
need to keep some of your students’ non-exam assessed work. We will let you know if we need to do
this.

http://aqa.org.uk/7517
http://www.jcq.org.uk/

110 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

7 	General administration
You can find information about all aspects of administration, as well as all the forms you need, at
aqa.org.uk/examsadmin

7.1 	 Entries and codes
You only need to make one entry for each qualification – this will cover all the question papers, non-
exam assessement and certification.

Every specification is given a national discount (classification) code by the Department for Education
(DfE), which indicates its subject area.

If a student takes two specifications with the same discount code, Further and Higher Education
providers are likely to take the view that they have only achieved one of the two qualifications. Please
check this before your students start their course.

Qualification title Option AQA entry
code

DfE discount
code

AQA Advanced Subsidiary GCE in
Computer Science

Option A (C#) 7516A 2610 (post-16),
CK1 (KS4)

Option B (Java) 7516B 2610 (post-16),
CK1 (KS4)

Option C (Pascal/Delphi) 7516C 2610 (post-16),
CK1 (KS4)

Option D (Python) 7516D 2610 (post-16),
CK1 (KS4)

Option E (VB.Net) 7516E 2610 (post-16),
CK1 (KS4)

AQA Advanced Level GCE in
Computer Science

Option A (C#) 7517A 2610
Option B (Java) 7517B 2610
Option C (Pascal/Delphi) 7517C 2610
Option D (Python) 7517D 2610
Option E (VB.Net) 7517E 2610

These specifications comply with Ofqual’s:
•• General conditions of recognition that apply to all regulated qualifications
•• GCE qualification level conditions that apply to all GCEs
•• GCE subject level conditions that apply to all GCEs in this subject
•• all relevant regulatory documents.

Ofqual has accredited these specifications. The qualification accreditation number (QAN) for the AS is
601/4699/0. The QAN for the A-level is 601/4569/9.

http://aqa.org.uk/7517
http://aqa.org.uk/examsadmin

111

AS Computer Science (7516) and A-level Computer Science (7517). AS exams May/June 2016 onwards. A-level exams May/June 2017 onwards.
Version 1.2

Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

7.2 	 Overlaps with other qualifications
There is overlapping content in the AS and A-level Computer Science specifications. This helps you to
teach the AS and A-level together.

7.3 	 Awarding grades and reporting results
The AS qualification will be graded on a five-point scale: A, B, C, D and E.

The A-level qualification will be graded on a six-point scale: A*, A, B, C, D and E.

Students who fail to reach the minimum standard for grade E will be recorded as U (unclassified) and
will not receive a qualification certificate.

7.4 	 Re-sits and shelf life
Students can re-sit the qualifications as many times as they wish, within the shelf life of the
qualifications.

7.5 	 Previous learning and prerequisites
There are no previous learning requirements. Any requirements for entry to a course based on these
specifications are at the discretion of schools and colleges.

However, we recommend that students should have the skills and knowledge associated with a GCSE
Computer Science course or equivalent.

7.6 	 Access to assessment: diversity and inclusion
General qualifications are designed to prepare students for a wide range of occupations and further
study. Therefore our qualifications must assess a wide range of competences.

The subject criteria have been assessed to see if any of the skills or knowledge required present any
possible difficulty to any students, whatever their ethnic background, religion, sex, age, disability or
sexuality. If any difficulties were encountered, the criteria were reviewed again to make sure that tests of
specific competences were only included if they were important to the subject.

As members of the Joint Council for Qualifications (JCQ) we participate in the production of the JCQ
document Access Arrangements and Reasonable Adjustments: General and Vocational qualifications.
We follow these guidelines when assessing the needs of individual students who may require an access
arrangement or reasonable adjustment. This document is published on the JCQ website at jcq.org.uk

Students with disabilities and special needs
We can make arrangements for disabled students and students with special needs to help them access
the assessments, as long as the competences being tested are not changed. Access arrangements
must be agreed before the assessment. For example, a Braille paper would be a reasonable adjustment
for a Braille reader but not for a student who does not read Braille.

We are required by the Equality Act 2010 to make reasonable adjustments to remove or lessen any
disadvantage that affects a disabled student.

If you have students who need access arrangements or reasonable adjustments, you can apply using
the Access arrangements online service at aqa.org.uk/eaqa

http://aqa.org.uk/7517
http://www.jcq.org.uk/
http://www.aqa.org.uk/eaqa

112 Visit aqa.org.uk/7517 for the most up-to-date specifications, resources, support and administration

Special consideration
We can give special consideration to students who have been disadvantaged at the time of the
assessment through no fault of their own – for example a temporary illness, injury or serious problem
such as the death of a relative. We can only do this after the assessment.

Your exams officer should apply online for special consideration at aqa.org.uk/eaqa

For more information and advice about access arrangements, reasonable adjustments and special
consideration please see aqa.org.uk/access or email accessarrangementsqueries@aqa.org.uk

7.7 	 Working with AQA for the first time
If your school or college has not previously offered any AQA specification, you need to register as an
AQA centre to offer our specifications to your students. Find out how at aqa.org.uk/becomeacentre

If your school or college is new to these specifications, please let us know by completing an Intention to
enter form. The easiest way to do this is via e-AQA at aqa.org.uk/eaqa

7.8 	 Private candidates
These specifications are not available to private candidates.

http://aqa.org.uk/7517
http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/access
http://www.aqa.org.uk/becomeacentre
http://www.aqa.org.uk/eaqa

AS AND
A-LEVEL
COMPUTER
SCIENCE
AS (7516)
A-level (7517)

Specifications
For teaching from September 2015 onwards
For AS exams in May/June 2016 onwards
For A-level exams in May/June 2017 onwards

Version 1.2 February 2016

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are permitted to copy
material from these specifications for their own internal use.
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales (company number
3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

aqa.org.uk

G
00396

Get help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/7517

You can talk directly to the Computer Science subject team

E: computerscience@aqa.org.uk

T: 0161 957 3980

http://aqa.org.uk/7517
mailto:computerscience%40aqa.org.uk?subject=

	1 	Introduction
	1.1 	Why choose AQA for AS and A-level Computer Science
	1.2 	Support and resources to help you teach
	2 	Specification at a glance
	2.1 	AS
	2.2 	A-level

	3 	Subject content – AS
	3.1 	Fundamentals of programming
	3.2 	Fundamentals of data structures
	3.3 	Systematic approach to problem solving
	3.4 	Theory of computation
	3.5 	Fundamentals of data representation
	3.6 	Fundamentals of computer systems
	3.7 	Fundamentals of computer organisation and architecture
	3.8 	Consequences of uses of computing
	3.9 	Fundamentals of communication and networking

	4 	Subject content – A-level
	4.1 	Fundamentals of programming
	4.2 	Fundamentals of data structures
	4.3 	Fundamentals of algorithms
	4.4 	Theory of computation
	4.5 	Fundamentals of data representation
	4.6 	Fundamentals of computer systems
	4.7 	Fundamentals of computer organisation and architecture
	4.8 	Consequences of uses of computing
	4.9 	Fundamentals of communication and networking
	4.10 	Fundamentals of databases
	4.11 	Big Data
	4.12 	Fundamentals of functional programming
	4.13 	Systematic approach to problem solving
	4.14 	Non-exam assessment – the computing practical project

	5 	Scheme of assessment
	5.1 	Aims
	5.2 	Assessment objectives
	5.3 	Assessment weightings

	6 	Non-exam assessment administration
	6.1 	Supervising and authenticating
	6.2 	Avoiding malpractice
	6.3 	Teacher standardisation
	6.4 	Internal standardisation
	6.5 	Annotation
	6.6 	Submitting marks
	6.7 	Factors affecting individual students
	6.8 	Keeping students' work
	6.9 	Moderation
	6.10 	After moderation

	7 	General administration
	7.1 	Entries and codes
	7.2 	Overlaps with other qualifications
	7.3 	Awarding grades and reporting results
	7.4 	Re-sits and shelf life
	7.5 	Previous learning and prerequisites
	7.6 	Access to assessment: diversity and inclusion
	7.7 	Working with AQA for the first time
	7.8 	Private candidates

